login
A192014
Decimal expansion of Sum_{k>=1} 1/(3^k * 2^(3^k)).
2
0, 4, 1, 8, 8, 3, 6, 8, 0, 8, 3, 1, 5, 0, 2, 9, 8, 5, 0, 7, 1, 2, 5, 2, 8, 9, 8, 6, 2, 4, 5, 7, 1, 6, 8, 2, 4, 2, 6, 0, 9, 6, 7, 5, 8, 4, 6, 5, 4, 8, 5, 7, 5, 3, 5, 1, 8, 2, 8, 9, 2, 1, 9, 5, 4, 2, 0, 5, 0, 0, 6, 7, 2, 8, 9, 6, 6, 7, 1, 0, 6, 4, 5, 1, 8, 6, 5, 5, 7, 0, 7, 4, 2, 2, 6, 8, 1, 6, 8, 7, 0, 1, 4, 8, 1, 7, 3, 1, 9
OFFSET
0,2
COMMENTS
Stoneham proved that this number is 2-normal. David Bailey suggests a pseudorandom number generator based on it (though similar PRNGs could be based on other Stoneham numbers).
LINKS
David H. Bailey and Richard E. Crandall, Random generators and normal numbers, Experimental Mathematics 11:4 (2004), pp. 527-546. [Alternate link]
Eric W. Weisstein, Stoneham Number.
EXAMPLE
0.0418836808315029850712528986245716824260967584654857535182892195420500672896...
MATHEMATICA
digits = 108; s = NSum[1/(3^n*2^3^n), {n, 1, Infinity}, WorkingPrecision -> digits + 5, NSumTerms -> 6]; Join[{0}, RealDigits[s, 10, digits] // First] (* Jean-François Alcover, Mar 07 2013, updated Mar 13 2015 *)
PROG
(PARI) suminf(k=1, x=3^k; (1./x)>>x) \\ Charles R Greathouse IV, Jun 22 2011
CROSSREFS
Sequence in context: A210196 A249252 A128414 * A019699 A125092 A122914
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved