login
A122914
Decimal expansion of (1 + log(2*Pi))/2, the entropy of the standard normal distribution.
1
1, 4, 1, 8, 9, 3, 8, 5, 3, 3, 2, 0, 4, 6, 7, 2, 7, 4, 1, 7, 8, 0, 3, 2, 9, 7, 3, 6, 4, 0, 5, 6, 1, 7, 6, 3, 9, 8, 6, 1, 3, 9, 7, 4, 7, 3, 6, 3, 7, 7, 8, 3, 4, 1, 2, 8, 1, 7, 1, 5, 1, 5, 4, 0, 4, 8, 2, 7, 6, 5, 6, 9, 5, 9, 2, 7, 2, 6, 0, 3, 9, 7, 6, 9, 4, 7, 4, 3, 2, 9, 8, 6, 3, 5, 9, 5, 4, 1, 9, 7, 6, 2, 2, 0
OFFSET
1,2
COMMENTS
For a normal distribution with standard deviation sigma, add log(sigma). - Stanislav Sykora, Jan 15 2017
FORMULA
Equals (1 + log(2*Pi))/2 = 1/2 - A075700 = (1 + A061444)/2.
Equals -zeta(0) - zeta'(0). - Peter Luschny, May 16 2020
Equals 1 + G'(1), where G(x) is the Barnes G-function. - Amiram Eldar, Jun 08 2022
EXAMPLE
1.4189385332046727417803297364056176398613974736377834128171515404827656959...
MATHEMATICA
RealDigits[(1 + Log[2 Pi])/2, 10, 80]
CROSSREFS
Partial quotients in A122915.
Sequence in context: A192014 A019699 A125092 * A245566 A016689 A105533
KEYWORD
cons,easy,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Sep 18 2006
EXTENSIONS
a(80) corrected by Georg Fischer, Jul 10 2021
STATUS
approved