OFFSET
0,3
COMMENTS
a(n) = Sum_{k>=0} k*A191312(n,k).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: g = z*(4*z-1+q)/(q*(1-z)^2*(1-2*z+q)), where q=sqrt(1-4*z^2).
a(n) ~ 2^n * (1 + 1/sqrt(2*Pi*n) + 1/3*(-1)^n/sqrt(2*Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: n*(3*n-13)*a(n) +2*(-6*n^2+29*n-18)*a(n-1) +(3*n^2-13*n+24)*a(n-2) +2*(21*n^2-124*n+150)*a(n-3) +4*(-15*n^2+92*n-132) *a(n-4) +8*(n-3)*(3*n-10) *a(n-5)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(4)=15 because the sum of the abscissae of the first returns in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD is 0+4+3+2+2+4=15; here H=(1,0), U=(1,1), and D=(1,-1).
MAPLE
g := z*(4*z-1+sqrt(1-4*z^2))/((1-z)^2*sqrt(1-4*z^2)*(1-2*z+sqrt(1-4*z^2))): gser := series(g, z = 0, 37): seq(coeff(gser, z, n), n = 0 .. 34);
MATHEMATICA
CoefficientList[Series[x*(4*x-1+Sqrt[1-4*x^2])/((1-x)^2*Sqrt[1-4*x^2]*(1-2*x+Sqrt[1-4*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 30 2011
STATUS
approved