login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191313
Sum of the abscissae of the first returns to the horizontal axis (assumed to be 0 if there are no such returns) in all dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights).
2
0, 0, 2, 5, 15, 30, 71, 134, 296, 551, 1188, 2211, 4720, 8815, 18722, 35105, 74307, 139842, 295223, 557366, 1174031, 2222606, 4672473, 8866776, 18607461, 35384676, 74139407, 141248270, 295524297, 563959752, 1178389423, 2252131246, 4700155088, 8995122383, 18751860084
OFFSET
0,3
COMMENTS
a(n) = Sum_{k>=0} k*A191312(n,k).
LINKS
FORMULA
G.f.: g = z*(4*z-1+q)/(q*(1-z)^2*(1-2*z+q)), where q=sqrt(1-4*z^2).
a(n) ~ 2^n * (1 + 1/sqrt(2*Pi*n) + 1/3*(-1)^n/sqrt(2*Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: n*(3*n-13)*a(n) +2*(-6*n^2+29*n-18)*a(n-1) +(3*n^2-13*n+24)*a(n-2) +2*(21*n^2-124*n+150)*a(n-3) +4*(-15*n^2+92*n-132) *a(n-4) +8*(n-3)*(3*n-10) *a(n-5)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(4)=15 because the sum of the abscissae of the first returns in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD is 0+4+3+2+2+4=15; here H=(1,0), U=(1,1), and D=(1,-1).
MAPLE
g := z*(4*z-1+sqrt(1-4*z^2))/((1-z)^2*sqrt(1-4*z^2)*(1-2*z+sqrt(1-4*z^2))): gser := series(g, z = 0, 37): seq(coeff(gser, z, n), n = 0 .. 34);
MATHEMATICA
CoefficientList[Series[x*(4*x-1+Sqrt[1-4*x^2])/((1-x)^2*Sqrt[1-4*x^2]*(1-2*x+Sqrt[1-4*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
CROSSREFS
Cf. A191312.
Partial sums of A226881.
Sequence in context: A287843 A290828 A290836 * A078528 A309272 A077686
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 30 2011
STATUS
approved