This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189999 a(n) = n + [n*s/r] + [n*t/r]; r=1, s=sinh(1), t=cosh(1). 4
 3, 7, 10, 14, 17, 22, 25, 29, 32, 36, 39, 44, 48, 51, 55, 58, 62, 66, 70, 73, 77, 80, 85, 89, 92, 96, 99, 103, 107, 111, 114, 118, 121, 125, 130, 133, 137, 140, 144, 148, 152, 155, 159, 162, 166, 170, 174, 178, 181, 185, 188, 193, 196, 200, 203, 207, 210, 215, 219, 222, 226, 229, 234, 237, 241, 244, 248, 251, 256, 260, 263, 267, 270 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is one of three sequences that partition the positive integers.  In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint.  Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked.  Define b(n) and c(n) as the ranks of n/s and n/t.  It is easy to prove that a(n) = n + [n*s/r] + [n*t/r], b(n) = n + [n*r/s] + [n*t/s], c(n) = n + [n*r/t] + [n*s/t], where []=floor. Taking r=1, s=sinh(1), t=cosh(1) gives a=A189999, b=A190000, c=A190001. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA A189999:  a(n) = n + [n*sinh(1)] + [n*cosh(1)]. A190000:  b(n) = n + [n*csch(1)] + [n*coth(1)]. A190001:  c(n) = n + [n*sech(1)] + [n*tanh(1)]. MATHEMATICA r=1; s=Sinh[1]; t=Cosh[1]; a[n_] := n + Floor[n*s/r] + Floor[n*t/r]; b[n_] := n + Floor[n*r/s] + Floor[n*t/s]; c[n_] := n + Floor[n*r/t] + Floor[n*s/t]; Table[a[n], {n, 1, 120}]  (*A189999*) Table[b[n], {n, 1, 120}]  (*A190000*) Table[c[n], {n, 1, 120}]  (*A190001*) PROG (PARI) for(n=1, 100, print1(n + floor(n*sinh(1)) + floor(n*cosh(1)), ", ")) \\ G. C. Greubel, Jan 11 2018 (MAGMA) [n + Floor(n*Sinh(1)) + Floor(n*Cosh(1)): n in [1..100]]; // G. C. Greubel, Jan 11 2018 CROSSREFS Cf. A190000, A190001, A190002. Sequence in context: A047355 A248522 A098005 * A171983 A003231 A189460 Adjacent sequences:  A189996 A189997 A189998 * A190000 A190001 A190002 KEYWORD nonn AUTHOR Clark Kimberling, May 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 12:27 EST 2018. Contains 299411 sequences. (Running on oeis4.)