login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189117
Conjectured number of pairs of consecutive perfect powers (A001597) differing by n.
4
1, 1, 2, 3, 1, 0, 2, 1, 3, 1, 2, 1, 3, 0, 2, 1, 5, 2, 3, 1, 1, 0, 1, 2, 1, 2, 1, 3, 0, 1, 0, 1, 1, 0, 2, 1, 1, 1, 3, 1, 1, 0, 1, 0, 1, 0, 3, 1, 2, 0, 1, 0, 2, 0, 2, 1, 1, 0, 1, 2, 1, 0, 1, 0, 3, 0, 2, 2, 1, 0, 2, 0, 2, 1, 1, 1, 1, 0, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 1, 2, 0, 2, 0, 1, 5
OFFSET
1,3
COMMENTS
Only a(1) is proved. Perfect powers examined up to 10^21. This is similar to A076427, but more restrictive.
Hence, through 10^21, there is only one value in the sequence: Semiprimes which are both one more than a perfect power and one less than another perfect power. This is to perfect powers A001597 approximately as A108278 is to squares. A more exact analogy would be to the set of integers such as 30^2 = 900 since 900-1 = 899 = 29 * 31, and 900+1 = 901 = 17 * 53. A189045 INTERSECTION A189047. a(1) = 26 because 26 = 2 * 13 is semiprime, 26-1 = 25 = 5^2, and 26+1 = 27 = 3^3. - Jonathan Vos Post, Apr 16 2011
Pillai's conjecture is that a(n) is finite for all n. - Charles R Greathouse IV, Apr 30 2012
EXAMPLE
1 = 3^2 - 2^3;
2 = 3^3 - 2^5;
3 = 2^2 - 1^2 = 2^7 - 5^3;
4 = 2^3 - 2^2 = 6^2 - 2^5 = 5^3 - 11^2.
MATHEMATICA
nn = 10^12; pp = Join[{1}, Union[Flatten[Table[n^i, {i, 2, Log[2, nn]}, {n, 2, nn^(1/i)}]]]]; d = Select[Differences[pp], # <= 100 &]; Table[Count[d, n], {n, 100}]
CROSSREFS
Cf. A023056 (least k such that k and k+n are consecutive perfect powers).
Cf. A023057 (conjectured n such that a(n)=0).
Sequence in context: A133623 A065862 A368495 * A365196 A372257 A253580
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 16 2011
STATUS
approved