login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188312
Expansion of (1/(1-x^2))*c(x/((1-x)*(1-x^2))) where c(x) is the g.f. of A000108.
4
1, 1, 4, 12, 45, 174, 709, 2978, 12825, 56303, 251060, 1133943, 5176926, 23851690, 110759081, 517853840, 2435786531, 11517940357, 54722081630, 261089977806, 1250479470053, 6009884614944, 28975052979797, 140098515402139, 679189779433800, 3300702453217325, 16076773046682690
OFFSET
0,3
COMMENTS
Hankel transform is the (25,-29) Somos-4 sequence A188313. Image of Catalan numbers by A188316.
LINKS
FORMULA
G.f.: (1-x^2 - sqrt(1-4*x-6*x^2+x^4))/(2*x*(1+x)).
G.f.: u(x)=1/(1-x^2-x/(1-x-x*u(x))).
G.f.: 1/(1-x^2-x/(1-x-x/(1-x^2-x/(1-x-x/(1-...))))) (continued fraction).
Conjecture: (n+1)*a(n) +(3-4*n)*a(n-1) + (7-6*n)*a(n-2) -a(n-3) +(n-4)*a(n-4)=0. - R. J. Mathar, Nov 15 2011
a(n) = a(n-1) + (-1)^n + Sum_{i=0..n-1} a(i)*a(n-1-i). - Vladimir Kruchinin, May 03 2018
a(n) = Sum_{i=0..n} Sum_{k=1..n-i} (-1)^(n-k-i)*C(k+i-1,k-1)*C(2*k+i-2,k+i-1)*C(n-i-1,n-k-i)/k. - Vladimir Kruchinin, May 03 2018
a(n) = Sum_{i=0..n} (-1)^(n-i)*hypergeom([(i+1)/2, i/2+1, i-n], [1, 2], 4). - Peter Luschny, May 03 2018
MAPLE
a := n -> add((-1)^(n-i)*hypergeom([(i+1)/2, i/2+1, i-n], [1, 2], 4), i=0..n);
seq(simplify(a(n)), n=0..26); # Peter Luschny, May 03 2018
MATHEMATICA
CoefficientList[Series[(1-x^2 -Sqrt[1-4*x-6*x^2+x^4])/(2*x*(1+x)), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
PROG
(Maxima)
a(n):=sum(sum((-1)^(n-k-i)*binomial(k+i-1, k-1)*binomial(2*k+i-2, k+i-1)* binomial(n-i-1, n-k-i)/k, k, 1, n-i), i, 0, n); /* Vladimir Kruchinin, May 03 2018 */
(PARI) x='x+O('x^50); Vec((1-x^2 -sqrt(1-4*x-6*x^2+x^4))/(2*x*(1+x))) \\ G. C. Greubel, Aug 14 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x^2 -Sqrt(1-4*x-6*x^2+x^4))/(2*x*(1+x)))); // G. C. Greubel, Aug 14 2018
CROSSREFS
Cf. A188314.
Sequence in context: A200539 A149369 A151432 * A006735 A166115 A027288
KEYWORD
nonn
AUTHOR
Paul Barry, Mar 28 2011
STATUS
approved