OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: (1-x^2 - sqrt(1-4*x-6*x^2+x^4))/(2*x*(1+x)).
G.f.: u(x)=1/(1-x^2-x/(1-x-x*u(x))).
G.f.: 1/(1-x^2-x/(1-x-x/(1-x^2-x/(1-x-x/(1-...))))) (continued fraction).
Conjecture: (n+1)*a(n) +(3-4*n)*a(n-1) + (7-6*n)*a(n-2) -a(n-3) +(n-4)*a(n-4)=0. - R. J. Mathar, Nov 15 2011
a(n) = a(n-1) + (-1)^n + Sum_{i=0..n-1} a(i)*a(n-1-i). - Vladimir Kruchinin, May 03 2018
a(n) = Sum_{i=0..n} Sum_{k=1..n-i} (-1)^(n-k-i)*C(k+i-1,k-1)*C(2*k+i-2,k+i-1)*C(n-i-1,n-k-i)/k. - Vladimir Kruchinin, May 03 2018
a(n) = Sum_{i=0..n} (-1)^(n-i)*hypergeom([(i+1)/2, i/2+1, i-n], [1, 2], 4). - Peter Luschny, May 03 2018
MAPLE
a := n -> add((-1)^(n-i)*hypergeom([(i+1)/2, i/2+1, i-n], [1, 2], 4), i=0..n);
seq(simplify(a(n)), n=0..26); # Peter Luschny, May 03 2018
MATHEMATICA
CoefficientList[Series[(1-x^2 -Sqrt[1-4*x-6*x^2+x^4])/(2*x*(1+x)), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
PROG
(Maxima)
a(n):=sum(sum((-1)^(n-k-i)*binomial(k+i-1, k-1)*binomial(2*k+i-2, k+i-1)* binomial(n-i-1, n-k-i)/k, k, 1, n-i), i, 0, n); /* Vladimir Kruchinin, May 03 2018 */
(PARI) x='x+O('x^50); Vec((1-x^2 -sqrt(1-4*x-6*x^2+x^4))/(2*x*(1+x))) \\ G. C. Greubel, Aug 14 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x^2 -Sqrt(1-4*x-6*x^2+x^4))/(2*x*(1+x)))); // G. C. Greubel, Aug 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Barry, Mar 28 2011
STATUS
approved