login
A185681
a(n) = start of n consecutive numbers divisible respectively by prime(k)^n, for k=1..n.
0
2, 8, 21248, 1197741248, 16414088688381248, 579329868703698452660781248, 20182773361697812807734811854155781248, 28343998868273668587268878406666355122557128720825781248
OFFSET
1,1
COMMENTS
a(n) is the smallest number such that: prime(1)^n | a(n), prime(2)^n | a(n)+1,..., prime(n)^n | a(n)+n-1.
EXAMPLE
a(1) = 2 as 2 is divisible by 2^1 ;
a(2) = 8 as 8 and 9 are divisible by 2^2 and 3^2 respectively ;
a(3) = 21248 as 21248, 21249 and 21250 are divisible by 2^3, 3^3 and 5^3 respectively.
MATHEMATICA
Table[ ChineseRemainder[ Table[ -i, {i, 0, n - 1}], Table[ Prime[i]^n, {i, 1, n}]], {n, 2, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 10 2011
STATUS
approved