The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069561 Start of a run of n consecutive positive numbers divisible respectively by first n primes. 5
 2, 2, 8, 158, 788, 788, 210998, 5316098, 34415168, 703693778, 194794490678, 5208806743928, 138782093170508, 5006786309605868, 253579251611336438, 12551374903381164638, 142908008812141343558, 77053322014980646906358 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS It is evident that from a(3) onwards terms must be congruent to 8 mod p(3)#, where p(n)# is the n-th primorial (A002110). In fact the sequence for A069561(n) == k (mod p(n)#) for k: 2, 2, 8, 788, 788, 210988, etc. This follows from the Chinese Remainder Theorem. LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..350 FORMULA log a(n) << n log n. - Charles R Greathouse IV, Jun 20 2015 EXAMPLE a(5) = 788 as 788, 789, 790, 791 and 792 are divisible by 2, 3, 5, 7, and 11 respectively. MATHEMATICA f[n_] := ChineseRemainder[-Range[0, n - 1], Prime[Range[n]]]; Array[f, 17, 2] (* Robert G. Wilson v, Jan 13 2012 *) (* This code uses memoization in calculating the coeff for the primorial assoc'ed with a(n) value to generate a(n+1), producing 1000 terms in under one second (on a 2017 Costco Dell 64-bit Windows 10 machine)*) q =0; q =0; q[n_]:= (ModularInverse[Product[Prime[i], {i, 1, n-1}], Prime[n]] * Mod[Prime[n]-n+1-g[n-1], Prime[n]])  // Mod[#, Prime[n]]&; g =2; g =2; g[r_] :=g[r]= g[r-1] + q[r] * Product[Prime[i], {i, 1, r-1}]; Array[g, 1000] (* Christopher Lamb, Oct 19 2021 *) PROG (PARI) a(n)=lift(chinese(vector(max(n, 2), k, Mod(1-k, prime(k))))) \\ Charles R Greathouse IV, Jun 20 2015 CROSSREFS Cf. A072562. Sequence in context: A270405 A047692 A270316 * A180370 A326939 A341303 Adjacent sequences:  A069558 A069559 A069560 * A069562 A069563 A069564 KEYWORD nonn AUTHOR Amarnath Murthy, Mar 22 2002 EXTENSIONS More terms to a(15) from Sascha Kurz, Mar 23 2002 Edited and extended by Robert G. Wilson v, Aug 09 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 08:43 EDT 2022. Contains 356993 sequences. (Running on oeis4.)