login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185375
a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.
2
0, 0, 1, 91, 966, 5082, 18447, 53053, 129948, 282948, 562989, 1043119, 1824130, 3040830, 4868955, 7532721, 11313016, 16556232, 23683737, 33201987, 45713278, 61927138, 82672359, 108909669, 141745044, 182443660
OFFSET
0,4
COMMENTS
Third column (k=2) of A008958.
FORMULA
a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.
a(n) = binomial(2*n+1,5)*(10*n-17)/3.
From G. C. Greubel, Jun 28 2017: (Start)
G.f.: x^2*(1 + 84*x + 350*x^2 + 196*x^3 + 9*x^4)/(1 - x)^7.
E.g.f.: (1/90)*x^2*(45 + 1320 x + 2280 x^2 + 864 x^3 + 80 x^4)*exp(x). (End)
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Wesley Ivan Hurt, Apr 23 2021
a(n) = Sum_{1 <= i <= j <= n-1} (2*i - 1)^2 * (2*j - 1)^2. - Peter Bala, Sep 03 2023
MATHEMATICA
Table[n*(n - 1)*(2*n + 1)*(2*n - 1)*(2*n - 3)*(10*n - 17)/90, {n, 0, 50}] (* G. C. Greubel, Jun 28 2017 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 1, 91, 966, 5082, 18447}, 30] (* Harvey P. Dale, Oct 10 2021 *)
PROG
(PARI) a(n) = binomial(2*n+1, 5)*(10*n-17)/3 \\ Michel Marcus, Jun 18 2013
(Magma) [n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90 : n in [0..50]]; // Wesley Ivan Hurt, Apr 23 2021
CROSSREFS
Third column (k=2) of A008958 Triangle of central factorial numbers.
Cf. A103220.
Sequence in context: A129255 A093291 A254519 * A036526 A170955 A020316
KEYWORD
easy,nonn
AUTHOR
Wesley Transue, Jan 21 2012
STATUS
approved