login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103220 a(n) = n*(n+1)*(3*n^2+n-1)/6. 11
0, 1, 13, 58, 170, 395, 791, 1428, 2388, 3765, 5665, 8206, 11518, 15743, 21035, 27560, 35496, 45033, 56373, 69730, 85330, 103411, 124223, 148028, 175100, 205725, 240201, 278838, 321958, 369895, 422995, 481616, 546128, 616913, 694365, 778890 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row sums of A103219.

From Bruno Berselli, Dec 10 2010: (Start)

a(n) = n*A002412(n) - Sum_{i=0..n-1} A002412(i). More generally: n^2*(n+1)*(2*d*n-2*d+3)/6 - (Sum_{i=0..n-1} i*(i+1)*(2*d*i-2*d+3))/6 = n * (n+1) * (3*d*n^2-d*n+4*n-2*d+2)/12; in this sequence is d=2.

The inverse binomial transform yields 0, 1, 11, 22, 12, 0, 0 (0 continued). (End)

a(n-1) is also number of ways to place 2 nonattacking semi-queens (see A099152) on an n X n board. - Vaclav Kotesovec, Dec 22 2011

Also, one-half the even-indexed terms of the partial sums of A045947. - J. M. Bergot, Apr 12 2018

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

G.f.: x*(1+8*x+3*x^2)/(1-x)^5.

a(n) = Sum_{i=1..n} Sum_{j=1..n} max(i,j)^2. - Enrique Pérez Herrero, Jan 15 2013

a(n) = a(n-1) + (2*n-1)*n^2 with a(0)=0, see A015237. - J. M. Bergot, Jun 10 2017

From Wesley Ivan Hurt, Nov 20 2021: (Start)

a(n) = Sum_{k=1..n} k * C(2*k,2).

a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). (End)

MAPLE

for(n=0, 100, print1((3*n^4+4*n^3-n)/6, ", "))

MATHEMATICA

CoefficientList[Series[- x (1 + 8 x + 3 x^2) / (x - 1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *)

LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 13, 58, 170}, 40] (* Harvey P. Dale, Jan 23 2016 *)

PROG

(PARI) a(n)=n*(n+1)*(3*n^2+n-1)/6 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A002412, A002418, A099152, A103219, A015237 (first diffs).

Sequence in context: A230988 A183317 A055833 * A086221 A272386 A171749

Adjacent sequences: A103217 A103218 A103219 * A103221 A103222 A103223

KEYWORD

easy,nonn

AUTHOR

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 25 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 23:46 EST 2022. Contains 358572 sequences. (Running on oeis4.)