login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

floor(n*s+h-h*s), where s=(3+sqrt(5))/2, h=-1/4; complement of A184732.
3

%I #6 Sep 04 2016 08:15:38

%S 3,5,8,10,13,16,18,21,23,26,29,31,34,37,39,42,44,47,50,52,55,58,60,63,

%T 65,68,71,73,76,78,81,84,86,89,92,94,97,99,102,105,107,110,112,115,

%U 118,120,123,126,128,131,133,136,139,141,144,147,149,152,154,157,160,162,165,167,170,173,175,178,181,183,186,188,191,194,196,199,201,204,207,209,212,215,217,220,222,225,228,230,233,236,238,241,243,246,249,251,254,256,259,262,264,267,270,272,275,277,280,283,285,288,291,293,296,298,301,304,306,309,311,314

%N floor(n*s+h-h*s), where s=(3+sqrt(5))/2, h=-1/4; complement of A184732.

%F a(n)=floor(n*s+h-h*s), where s=(3+sqrt(5))/2, h=-1/4.

%p A184733 := proc(n)

%p phi := (1+sqrt(5))/2 ;

%p n+floor((n+1/4)*phi) ;

%p end proc:

%p seq(A184733(n),n=1..100) ; # _R. J. Mathar_, Sep 04 2016

%t r=(1+sqrt(5))/2, h=-1/4; s=r/(r-1);

%t Table[Floor[n*r+h],{n,1,120}] (* A184732 *)

%t Table[Floor[n*s+h-h*s],{n,1,120}] (*A184733 *)

%Y Cf. A184732, A184659.

%K nonn

%O 1,1

%A _Clark Kimberling_, Jan 20 2011