login
A184733
floor(n*s+h-h*s), where s=(3+sqrt(5))/2, h=-1/4; complement of A184732.
3
3, 5, 8, 10, 13, 16, 18, 21, 23, 26, 29, 31, 34, 37, 39, 42, 44, 47, 50, 52, 55, 58, 60, 63, 65, 68, 71, 73, 76, 78, 81, 84, 86, 89, 92, 94, 97, 99, 102, 105, 107, 110, 112, 115, 118, 120, 123, 126, 128, 131, 133, 136, 139, 141, 144, 147, 149, 152, 154, 157, 160, 162, 165, 167, 170, 173, 175, 178, 181, 183, 186, 188, 191, 194, 196, 199, 201, 204, 207, 209, 212, 215, 217, 220, 222, 225, 228, 230, 233, 236, 238, 241, 243, 246, 249, 251, 254, 256, 259, 262, 264, 267, 270, 272, 275, 277, 280, 283, 285, 288, 291, 293, 296, 298, 301, 304, 306, 309, 311, 314
OFFSET
1,1
FORMULA
a(n)=floor(n*s+h-h*s), where s=(3+sqrt(5))/2, h=-1/4.
MAPLE
A184733 := proc(n)
phi := (1+sqrt(5))/2 ;
n+floor((n+1/4)*phi) ;
end proc:
seq(A184733(n), n=1..100) ; # R. J. Mathar, Sep 04 2016
MATHEMATICA
r=(1+sqrt(5))/2, h=-1/4; s=r/(r-1);
Table[Floor[n*r+h], {n, 1, 120}] (* A184732 *)
Table[Floor[n*s+h-h*s], {n, 1, 120}] (*A184733 *)
CROSSREFS
Sequence in context: A210241 A190498 A077472 * A004937 A245314 A186150
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 20 2011
STATUS
approved