login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184521 Upper s-Wythoff sequence, where s=5n+1.  Complement of A184520. 2
7, 13, 19, 25, 31, 37, 44, 50, 56, 62, 68, 75, 81, 87, 93, 99, 106, 112, 118, 124, 130, 137, 143, 149, 155, 161, 168, 174, 180, 186, 192, 199, 205, 211, 217, 223, 229, 236, 242, 248, 254, 260, 267, 273, 279, 285, 291, 298, 304, 310, 316, 322, 329, 335, 341, 347, 353, 360, 366, 372, 378, 384, 390, 397, 403, 409, 415, 421, 428, 434, 440, 446, 452, 459, 465, 471, 477 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A184117 for the definition of lower and upper s-Wythoff sequences.

The terms 7,13,19,25,31,37,44,50 appear as the initial values of the n-weight domination number gamma_n(P_3 X P_8) in Hare (1990). This may or may not be a coincidence. - N. J. A. Sloane, May 31 2012

REFERENCES

Hare, E. O., k-weight domination and fractional domination of P_m X P_n. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 71--80. MR1140471 (92i:05201). - From N. J. A. Sloane, May 31 2012

LINKS

Table of n, a(n) for n=1..77.

MATHEMATICA

k = 5; r = -1; d = Sqrt[4 + k^2];

a[n_] := Floor[(1/2) (d + 2 - k) (n + r/(d + 2))];

b[n_] := Floor[(1/2) (d + 2 + k) (n - r/(d + 2))];

Table[a[n], {n, 120}]

Table[b[n], {n, 120}]

CROSSREFS

Cf. A184117, A184520.

Sequence in context: A080199 A016921 A260682 * A123843 A277093 A004082

Adjacent sequences:  A184518 A184519 A184520 * A184522 A184523 A184524

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jan 16 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 15:11 EST 2019. Contains 320374 sequences. (Running on oeis4.)