login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184117 Lower s-Wythoff sequence, where s(n) = 2n + 1. 54
1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 56, 57, 59, 60, 61, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 85, 87, 88, 90, 91, 93, 94, 95, 97, 98, 100, 101, 102, 104, 105, 107, 108, 110, 111, 112, 114, 115, 117, 118, 119, 121, 122, 124, 125, 126, 128, 129, 131, 132, 134, 135, 136, 138, 139, 141 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Suppose that s(n) is a nondecreasing sequence of positive integers. The lower and upper s(n)-Wythoff sequences, a and b, are introduced here. Define

a(1) = 1; b(1) = s(1) + a(1); and for n>=2,

a(n) = least positive integer not in {a(1),...,a(n-1),b(1),...,b(n-1)},

b(n) = s(n) + a(n).

Clearly, a and b are complementary. If s(n)=n, then

a=A000201, the lower Wythoff sequence, and

b=A001950, the upper Wythoff sequence.

A184117 is chosen to represent the class of s-Wythoff sequences for which s is an arithmetic sequence given by s(n) = kn - r. Such sequences (lower and upper) are indexed in the OEIS as shown here:

n+1....A026273...A026274

n......A000201...A001950 (the classical Wythoff sequences)

2n+1...A184117...A184118

2n.....A001951...A001952

2n-1...A136119...A184119

3n+1...A184478...A184479

3n.....A184480...A001956

3n-1...A184482...A184483

3n-2...A184484...A184485

4n+1...A184486...A184487

4n.....A001961...A001962

4n-1...A184514...A184515

The pattern continues for A184516 to A184531.

s-Wythoff sequences for choices of s other than arithmetic sequences include these:

A184419 and A184420 (s = lower Wythoff sequence)

A184421 and A184422 (s = upper Wythoff sequence)

A184425 and A184426 (s = triangular numbers)

A184427 and A184428 (s = squares)

A036554 and A003159 (invariant and limiting sequences).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

Robbert Fokkink, Gerard Francis Ortega, and Dan Rust, Corner the Empress, arXiv:2204.11805 [math.CO], 2022. Mentions this sequence.

FORMULA

a(n) = A184118(n) - s(n). - M. F. Hasler, Jan 07 2019

EXAMPLE

s=(3,5,7,9,11,13,...);

a=(1,2,3,5,6,8,...);

b=(4,7,10,14,17,21,...).

MATHEMATICA

k=2; r=-1;

mex:=First[Complement[Range[1, Max[#1]+1], #1]]&;

s[n_]:=k*n-r; a[1]=1; b[n_]:=b[n]=s[n]+a[n];

a[n_]:=a[n]=mex[Flatten[Table[{a[i], b[i]}, {i, 1, n-1}]]];

Table[s[n], {n, 30}] (* s = A005408 except for initial 1 *)

Table[a[n], {n, 100}] (* a = A184117 *)

Table[b[n], {n, 100}] (* b = A184118 *)

PROG

(PARI) A184117_upto(N, s(n)=2*n+1, a=[1], U=a)={while(a[#a]<N, U=setunion(U, [a[#a], a[#a]+s(#a)]); while(#U>1&&U[2]==U[1]+1, U=U[^1]); a=concat(a, U[1]+1)); a} \\ M. F. Hasler, Jan 07 2019

CROSSREFS

Cf. A000201, A001950, A001951, A001952, A003159, A036554.

Sequence in context: A026371 A187335 A161188 * A184624 A093001 A226721

Adjacent sequences: A184114 A184115 A184116 * A184118 A184119 A184120

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jan 09 2011

EXTENSIONS

Removed an incorrect g.f., Alois P. Heinz, Dec 14 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 17:12 EST 2022. Contains 358702 sequences. (Running on oeis4.)