login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183613 a(n) = 3^^(n+1) modulo 10^n. 6
7, 87, 387, 5387, 95387, 195387, 4195387, 64195387, 464195387, 2464195387, 62464195387, 262464195387, 7262464195387, 27262464195387, 627262464195387, 5627262464195387, 75627262464195387, 575627262464195387, 4575627262464195387, 4575627262464195387 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Backward concatenation of A133613.

For all m>n, 3^^m == 3^^(n+1) (mod 10^n). Hence, each term represents the tailing decimal digits of 3^^m for all sufficiently large m.

REFERENCES

M. RipĂ , La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 11-12, 69-78. ISBN 978-88-6178-789-6.

LINKS

Table of n, a(n) for n=1..20.

J. Jimenez Urroz and J. Luis A. Yebra, On the equation a^x == x (mod b^n), J. Int. Seq. 12 (2009) #09.8.8.

FORMULA

For n>1, a(n) = 3^a(n-1) mod 10^n.

CROSSREFS

Sequence in context: A092586 A048363 A254473 * A295036 A295527 A173812

Adjacent sequences:  A183610 A183611 A183612 * A183614 A183615 A183616

KEYWORD

nonn

AUTHOR

Max Alekseyev, Sep 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 11:46 EDT 2019. Contains 322330 sequences. (Running on oeis4.)