login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183611 E.g.f. satisfies: A'(x) = A(x)^2 + x*A(x)^3, with A(0) = 1. 2
1, 1, 3, 14, 91, 756, 7657, 91504, 1260441, 19663280, 342669691, 6597811584, 139094618467, 3186675803584, 78834061767825, 2094418664339456, 59474007876381553, 1797637447068293376, 57623116235327599411 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..400

V. Dotsenko, Pattern avoidance in labelled trees, arXiv preprint arXiv:1110.0844, 2011

FORMULA

E.g.f.: A(x) = 1 + A(x)*[Integral 1 + x*A(x) dx], where the integration does not include the constant term.

E.g.f.: d/dx Series_Reversion( Sum_{n>=1} x^(3*n-2)/(3*n-2)! - x^(3*n-1)/(3*n-1)! ).

a(n) ~ n^n * exp(Pi*(n+1)/(3*sqrt(3))-n). - Vaclav Kotesovec, Feb 19 2014

EXAMPLE

E.g.f.: A(x) = 1 + x + 3*x^2/2! + 14*x^3/3! + 91*x^4/4! +...

A'(x) = 1 + 3*x + 14*x^2/2! + 91*x^3/3! + 756*x^4/4! +...

A(x)^2 = 1 + 2*x + 8*x^2/2! + 46*x^3/3! + 348*x^4/4! + 3262*x^5/5! +...

A(x)^3 = 1 + 3*x + 15*x^2/2! + 102*x^3/3! + 879*x^4/4! + 4395*x^5/5! +...

E.g.f. A(x) = d/dx Series_Reversion(G(x)) where G(x) begins:

G(x) = x - x^2/2! + x^4/4! - x^5/5! + x^7/7! - x^8/8! + x^10/10! - x^11/11! +...

The series reversion of G(x) begins:

x + x^2/2! + 3*x^3/3! + 14*x^4/4! + 91*x^5/5! + 756*x^6/6! +...

PROG

(PARI) {a(n)=local(A=1); for(n=0, n, A=1+A*intformal(1+x*A+x*O(x^n))); n!*polcoeff(A, n)}

(PARI) {a(n)=n!*polcoeff(deriv(serreverse(sum(m=1, n\3+1, x^(3*m-2)/(3*m-2)!-x^(3*m-1)/(3*m-1)!+x^2*O(x^n)))), n)}

CROSSREFS

Cf. A199670, A049774.

Sequence in context: A215475 A120056 A125788 * A259903 A101220 A078456

Adjacent sequences:  A183608 A183609 A183610 * A183612 A183613 A183614

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 21:23 EST 2018. Contains 299588 sequences. (Running on oeis4.)