login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A182977
Total number of parts that are neither the smallest part nor the largest part in all partitions of n.
4
0, 0, 0, 0, 0, 0, 1, 2, 6, 12, 22, 39, 66, 103, 159, 243, 352, 510, 721, 1011, 1391, 1903, 2557, 3436, 4549, 5999, 7824, 10187, 13132, 16886, 21544, 27414, 34657, 43703, 54797, 68558, 85328, 105963, 131028, 161664, 198710
OFFSET
0,8
LINKS
FORMULA
a(n) = A006128(n) - A182978(n).
G.f.: g(x) = Sum_{i>=1} Sum_{j>=i+1} (Sum_{k=i+1..j-1} x^{i+j+k}/(1-x^k)/Product_{k=i..j}(1-x^k)). - Emeric Deutsch, Dec 25 2015
a(n) = Sum_{k>=0} k*A265249(n,k). - Emeric Deutsch, Dec 25 2015
EXAMPLE
For n = 6 the partitions of 6 are
6
5 + 1
4 + 2
4 + 1 + 1
3 + 3
3 + (2) + 1 .......... the "2" is the part that counts.
3 + 1 + 1 + 1
2 + 2 + 2
2 + 2 + 1 + 1
2 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1
There is only one part which is neither the smallest part nor the largest part in all partitions of 6, so a(6) = 1.
MAPLE
g := add(add((add(x^(i+j+k)/(1-x^k), k = i+1 .. j-1))/(mul(1-x^k, k = i .. j)), j = i+1 .. 80), i = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 45); # Emeric Deutsch, Dec 25 2015
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jul 17 2011
EXTENSIONS
a(12) corrected and more terms a(13)-a(40) from David Scambler, Jul 18 2011
STATUS
approved