login
A182553
Chromatic invariant of the complete tripartite graph K_(n,n,n).
3
1, 11, 1243, 490043, 463370491, 860454250571, 2769263554592683, 14178247400433059003, 108483732651999512059291, 1182804548772797481324575531, 17700419121823142496192223238923, 352709466470858225716888461028622363, 9127611521817307582541815420363992765691
OFFSET
1,2
COMMENTS
The chromatic invariant equals the absolute value of the first derivative of the chromatic polynomial evaluated at 1.
LINKS
Eric Weisstein's World of Mathematics, Chromatic Invariant
Eric Weisstein's World of Mathematics, Complete Tripartite Graph
FORMULA
a(n) = |(d/dq P(n,q))_{q=1}| with P(n,q) = Sum_{k,m=1..n} S2(n,k) * S2(n,m) * (q-k-m)^n * Product_{i=0..k+m-1} (q-i) and S2 = A008277.
a(n) ~ (n-1)!^3 / (Pi * 3^(3/2) * (1 - log(3/2)) * (log(3/2))^(3*n-1)). - Vaclav Kotesovec, Sep 03 2014, updated Feb 18 2017
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} (-1)^(n+i+j+k) * Stirling2(n,i) * Stirling2(n,j) * Stirling2(n,k) * (i+j+k-2)!. - Andrew Howroyd, Apr 22 2018
MAPLE
P:= n-> expand(add(add(Stirling2(n, k) *Stirling2(n, m)
*mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=1..n), k=1..n)):
a:= n-> abs(subs(q=1, diff(P(n), q))):
seq(a(n), n=1..15);
MATHEMATICA
Table[Sum[StirlingS2[n, k] StirlingS2[n, m] (-1)^(k + m + n) (1 - k - m)^n Gamma[k + m - 1], {k, n}, {m, n}], {n, 10}] (* Eric W. Weisstein, Apr 26 2017 *)
PROG
(PARI) a(n)={my(s=vector(n, k, stirling(n, k, 2))); sum(i=1, n, sum(j=1, n, sum(k=1, n, (-1)^(n+i+j+k)*s[i]*s[j]*s[k]*(i+j+k-2)! )))} \\ Andrew Howroyd, Apr 22 2018
(PARI) a(n)={(-1)^n*subst(serlaplace(sum(k=1, n, stirling(n, k, 2)*x^k)^3/x^2), x, -1)} \\ Andrew Howroyd, Apr 22 2018
CROSSREFS
Sequence in context: A068326 A001323 A266368 * A340293 A223039 A161586
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 04 2012
STATUS
approved