login
A182123
Poulet numbers of the form (6k+1)*(24k+1).
3
1387, 83665, 90751, 390937, 748657, 769567, 1092547, 1302451, 1530787, 1809697, 1907851, 2008597, 2746477, 3116107, 3375487, 4069297, 4314967, 4415251, 4567837, 5095177, 5481451, 5766001, 6236257, 6539527, 6787327, 8095447, 8650951, 9371251, 10505701, 11541307
OFFSET
1,1
COMMENTS
Note that in this sequence, 6k+1 and 24k+1 do not have to be prime.
Note: There are just 9 Chernick numbers in the first 1000 Carmichael numbers and there are 30 numbers of the form (6k+1)*(24k+1) in the first 1000 Poulet numbers!
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
E. W. Weisstein, Poulet Number
PROG
(PARI) list(lim)=lim\=1; my(v=List(), n, k=2); while(k++ && (n=(6*k+1)*(24*k+1))<=lim, if(Mod(2, n)^n==2, listput(v, n))); Vec(v) \\ Charles R Greathouse IV, Jun 29 2017
CROSSREFS
Cf. A001567.
Sequence in context: A317972 A216667 A177884 * A200971 A259722 A253497
KEYWORD
nonn
AUTHOR
Marius Coman, Apr 13 2012
EXTENSIONS
Terms corrected by Charles R Greathouse IV, Oct 02 2012
STATUS
approved