login
A182126
a(n) = prime(n)*prime(n+1) mod prime(n+2).
3
1, 1, 2, 12, 7, 12, 1, 2, 16, 11, 40, 12, 24, 7, 13, 16, 48, 40, 12, 48, 40, 60, 15, 48, 12, 24, 12, 24, 125, 72, 60, 16, 120, 24, 48, 72, 40, 60, 72, 16, 120, 24, 24, 12, 168, 65, 64, 12, 24, 60, 16, 120, 96, 72, 72, 16, 48, 40, 12, 120, 29, 72, 12, 24, 252
OFFSET
1,3
COMMENTS
Conjecture: for x>10^9, the most frequent value in a(n), n=0...x, has form 120*k.
Let b = prime(n+2) - prime(n) and c = prime(n+2) - prime(n+1). Conjecture: for n > 61, a(n) = b*c. This holds up to n = 9 * 10^16. - Charles R Greathouse IV, May 11 2012
With b and c as above, a(n) = b*c if and only if b*c < prime(n+2). Cramér's conjecture implies this is true for all sufficiently large n. - Robert Israel, Jun 19 2017
LINKS
EXAMPLE
(2*3) mod 5 = 1, (3*5) mod 7 = 1, (5*7) mod 11 = 2, (7*11) mod 13 = 12.
MAPLE
P:= [seq(ithprime(i), i=1..102)]:
seq(P[i]*P[i+1] mod P[i+2], i=1..100); # Robert Israel, Jun 19 2017
MATHEMATICA
Mod[#[[1]]#[[2]], #[[3]]]&/@Partition[Prime[Range[70]], 3, 1] (* Harvey P. Dale, Sep 30 2015 *)
PROG
(Haskell)
a182126 n = a182126_list !! (n-1)
a182126_list = zipWith3 (\p p' p'' -> mod (p * p') p'')
a000040_list (tail a000040_list) (drop 2 a000040_list)
-- Reinhard Zumkeller, Apr 23 2012
(PARI) p=2; q=3; forprime(r=5, 1e3, print1(p*q%r", "); p=q; q=r) \\ Charles R Greathouse IV, May 11 2012
(Magma) [NthPrime(n)*NthPrime(n+1) mod NthPrime(n+2): n in [1..70]]; // Vincenzo Librandi, Jun 20 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Apr 13 2012
STATUS
approved