login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182041
Number of independent sets of nodes in C_5 X C_n (n >= 1).
1
11, 1, 81, 391, 3561, 25531, 199821, 1511931, 11589281, 88389661, 675443291, 5157630831, 39394699881, 300868345701, 2297915763861, 17550293888221, 134040955378561, 1023739686467981, 7818833928607761, 59716490127924211, 456085875187977011, 3483364700645591901
OFFSET
0,1
REFERENCES
M. Golin, Y. C. Leung, Y. J. Wang and X. R. Yong, Counting structures in grid-graphs, cylinders and tori using transfer matrices: Survey and new results. In: Demetrescu, C., Sedgewick, R., Tamassia, R., (eds.) The Proceedings of the Second Workshop on Analytic Algorithmics and Combinatorics (ANALCO05), SIAM, Philadelphia, (2005), 250-258.
LINKS
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), #12.7.8.
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Torus Grid Graph
FORMULA
a(n)=4*a(n-1)+27*a(n-2)+10*a(n-3)-30*a(n-4)-7*a(n-5)+8*a(n-6)-a(n-7) with a(0)=11, a(1)=1, a[2]=81, a(3)=391, a(4)=3561, a(5)=25531, a(6)=199821.
G.f.: (-11*x^6+27*x^5+130*x^4-70*x^3-220*x^2-43*x+11)/((x^3-5*x^2-7*x+1)*(x^4-3*x^3-x^2+3*x+1)).
MATHEMATICA
LinearRecurrence[{4, 27, 10, -30, -7, 8, -1}, {11, 1, 81, 391, 3561, 25531, 199821}, 30] (* Harvey P. Dale, Mar 06 2013 *)
CROSSREFS
Sequence in context: A298084 A275304 A245677 * A086994 A305989 A286821
KEYWORD
nonn,easy
AUTHOR
Cesar Bautista, Apr 07 2012
STATUS
approved