This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182038 Expansion of eta(q) * eta(q^36) / (eta(q^4) * eta(q^9)) in powers of q. 1
 1, -1, -1, 0, 1, 0, -1, 1, 2, 0, -3, 0, 2, 0, -3, 0, 5, 0, -4, -2, 4, 0, -5, 0, 7, 2, -7, 0, 5, 0, -10, 1, 12, 0, -10, 0, 14, -4, -17, 0, 21, 0, -22, 4, 24, 0, -34, 0, 33, 1, -36, 0, 45, 0, -45, -8, 52, 0, -55, 0, 62, 8, -71, 0, 70, 0, -88, 2, 96, 0, -98, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 LINKS FORMULA Euler transform of period 36 sequence [ -1, -1, -1, 0, -1, -1, -1, 0, 0, -1, -1, 0, -1, -1, -1, 0, -1, 0, -1, 0, -1, -1, -1, 0, -1, -1, 0, 0, -1, -1, -1, 0, -1, -1, -1, 0, ...]. G.f. is  a period 1 Fourier series which satisfies f(-1 / (36 t)) = f(t) where q = exp(2 pi i t). G.f.: Product_{k>0} (1 - x^k) * (1 - x^(36*k)) / ((1 - x^(4*k)) * (1 - x^9*k)). a(6*n) = a(6*n + 4) = 0. a(6*n + 2) = -A092848(n). Convolution inverse of A187020. EXAMPLE q - q^2 - q^3 + q^5 - q^7 + q^8 + 2*q^9 - 3*q^11 + 2*q^13 - 3*q^15 + ... PROG (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^36 + A) / (eta(x^4 + A) * eta(x^9 + A)), n))} CROSSREFS Cf. A092848, A187020. Sequence in context: A163496 A092241 A213266 * A128144 A128145 A128143 Adjacent sequences:  A182035 A182036 A182037 * A182039 A182040 A182041 KEYWORD sign AUTHOR Michael Somos, Apr 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .