login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181602
Primes p such that p-1 is a semiprime and p+2 is prime or prime squared.
6
5, 7, 11, 23, 47, 59, 107, 167, 179, 227, 347, 359, 839, 1019, 1319, 1367, 1487, 1619, 2027, 2207, 2999, 3119, 3167, 3467, 4127, 4259, 4547, 4787, 4799, 5099, 5639, 5879, 6659, 6779, 6827, 7559, 8819, 10007, 10607, 11699, 12107, 12539, 14387, 14867
OFFSET
1,1
COMMENTS
Except for the second term, a(n)+1 is divisible by 6.
[Proof: a(n)=p is a prime, with p-1=q*r and two primes q<=r by definition. Omitting the special case p=2, p is odd, p+1 is even, so p+1=q*r+2 = 2(1+q*r/2). To show that p+1 is divisible by 6 we show that it is divisible by 2 and by 3; divisibility by 2 has already been shown in the previous sentence. (1+q*r/2 must be integer, so q*r/2 must be integer, so the smaller prime q of the semiprime must be q=2, so p=2*r+1. This shows that p=a(n) are a subset of A005383.) First subcase of the definition is that p+2 is also prime. Then p is a smaller twin prime and by a comment in A003627, p+1 is divisible by 3. Second subcase of the definition is that p+2 = s^2 with s a prime. s can be 3*k+1 or 3*k+2 --p=7 is the exception-- which leads to s^2 = 9*k^2+6*k+1 or s^2=9*k^2+12*k+4, so p+1 = 9*k^2+6*k or 9*k^2+12*k+3, and in both cases p+1 is divisible by 3.]
In consequence, except for the first three terms, first differences a(n+1)-a(n) are also divisible by 6.
LINKS
MATHEMATICA
semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; fQ[n_] := Block[{fi = FactorInteger@n}, Length@ fi == 1 && fi[[1, 2]] == 1 || fi[[1, 2]] == 2]; Select[ Prime@ Range@ 1293, semiPrimeQ[ # - 1] && fQ[ # + 2] &] (* Robert G. Wilson v, Nov 06 2010 *)
Select[Prime[Range[2000]], PrimeOmega[#-1]==2&&Or@@PrimeQ[{#+2, Sqrt[ #+2]}]&] (* Harvey P. Dale, Aug 12 2012 *)
PROG
(Magma) [ p: p in PrimesInInterval(3, 15000) | &+[ k[2]: k in Factorization(p-1) ] eq 2 and (IsPrime(p+2) or (q^2 eq p+2 and IsPrime(q) where q is Isqrt(p+2))) ]; // Klaus Brockhaus, Nov 03 2010
CROSSREFS
Cf. A001358 (semiprimes), A001248 (squares of primes).
Sequence in context: A090810 A092307 A005385 * A075705 A340308 A339096
KEYWORD
nonn
AUTHOR
Giovanni Teofilatto, Nov 01 2010
EXTENSIONS
Corrected (29 removed) and extended by Klaus Brockhaus, Robert G. Wilson v and R. J. Mathar, Nov 03 2010
STATUS
approved