login
A181550
T(n,k) = floor(n/k)*A181549(k), triangle read by rows.
2
1, 2, 3, 3, 3, 4, 4, 6, 4, 5, 5, 6, 4, 5, 6, 6, 9, 8, 5, 6, 12, 7, 9, 8, 5, 6, 12, 8, 8, 12, 8, 10, 6, 12, 8, 10, 9, 12, 12, 10, 6, 12, 8, 10, 11, 10, 15, 12, 10, 12, 12, 8, 10, 11, 18, 11, 15, 12, 10, 12, 12, 8, 10, 11, 18, 12, 12, 18, 16, 15, 12, 24, 8, 10, 11, 18, 12, 20
OFFSET
1,2
COMMENTS
A181549(n) = sum{k|n} k mu_2(n/k), a variant of Euler's phi function relative to the Moebius function of order 2.
LINKS
Peter Luschny, Sequences related to Euler's totient function.
EXAMPLE
1
2, 3
3, 3, 4
4, 6, 4, 5
5, 6, 4, 5, 6
6, 9, 8, 5, 6, 12
7, 9, 8, 5, 6, 12, 8
8, 12, 8, 10, 6, 12, 8, 10
MAPLE
A181550 := (n, k) -> iquo(n, k)*A181549(k);
MATHEMATICA
mu2[1] = 1; mu2[n_] := Sum[Boole[Divisible[n, d^2]]*MoebiusMu[n/d^2]*MoebiusMu[n/d], {d, Divisors[n]}]; A181549[n_] := Sum[k*mu2[n/k], {k, Divisors[n]}]; t[n_, k_] := Floor[n/k]*A181549[k]; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 05 2014 *)
CROSSREFS
Sequence in context: A156250 A029108 A350812 * A134841 A071112 A097087
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 30 2010
STATUS
approved