login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181386 Tetrahedron of terms C(r,n,m) representing the number of ways of choosing m disjoint subsets of r members from an original set of n members. 1
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 4, 6, 4, 1, 1, 3, 1, 1, 1, 1, 5, 10, 10, 5, 1, 1, 6, 3, 1, 1, 1, 1, 1, 1, 6, 15, 20, 15, 6, 1, 1, 10, 15, 1, 4, 1, 1, 1, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 15, 45, 15, 1, 10, 1, 1, 1, 1, 1, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 21, 105, 105, 1, 20 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

The start index for r is 1 but the start index for m and n is 0. For each value of r, the triangle T_r(n,m) has row n containing 1 + floor(n/r) terms.

From Frank M Jackson, Nov 20 2010: (Start)

C(r,mr,m) = C(r,mr-1,m-1).

C(1,m,m) = A000012, C(2,2m,m) = A001147,

C(3,3m,m), ..., C(10,10m,m) = A025035, ..., A025042.

C(2,26,10) = 150738274937250 and represents the number of possible plugboard settings for a WWII German Enigma Enciphering Machine.

C(r,2r,2) = A001700, C(r,3r,3) = A060542, C(r,4r,4) = A082368.

C(r,n,m) = C(r,mr-1,m-1)*binomial(n,rm),

  and applied recursively gives the identity

C(r,n,m) = Binomial(n,r*m) * Product_{p=1..m} Binomial(r*(m-p+1)-1,r-1).

(End)

C(2,26,10) = A266365(10), where 26 is the size of the alphabet. - Jonathan Sondow, Dec 29 2015

LINKS

Table of n, a(n) for n=1..92.

T. Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras

Tony Sale, Possible Plugboard Settings for a WWII German Enigma Enciphering Machine

FORMULA

C(r,n,m) = n!/((n-r*m)!*m!*(r!)^m).

EXAMPLE

r=1, C(1,n,m) is

  1

  1, 1

  1, 2,  1

  1, 3,  3,  1

  1, 4,  6,  4, 1

  1, 5, 10, 10, 5, 1

r=2, C(2,n,m) is

  1

  1

  1,  1

  1,  3

  1,  6,  3

  1, 10, 15

r=3, C(3,n,m) is

  1

  1

  1

  1,  1

  1,  4

  1, 10

MATHEMATICA

Flatten[Table[{n!/((n-r*m)!*m!*r!^m)}, {r, 1, 50}, {n, 0, 50}, {m, 0, Floor[n/r]}]]

CROSSREFS

C(1,n,m) = T_1(n,m) = A007318, C(2,n,m) = T_2(n,m) = A100861, and C(2,26,m) = A266365.

Sequence in context: A046213 A215625 A260222 * A193517 A189006 A245013

Adjacent sequences:  A181383 A181384 A181385 * A181387 A181388 A181389

KEYWORD

nonn,tabf

AUTHOR

Frank M Jackson, Oct 16 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 00:24 EST 2016. Contains 278993 sequences.