OFFSET
1,6
COMMENTS
The start index for r is 1 but the start index for m and n is 0. For each value of r, the triangle T_r(n,m) has row n containing 1 + floor(n/r) terms.
From Frank M Jackson, Nov 20 2010: (Start)
C(r,mr,m) = C(r,mr-1,m-1).
C(2,26,10) = 150738274937250 and represents the number of possible plugboard settings for a WWII German Enigma Enciphering Machine.
C(r,n,m) = C(r,mr-1,m-1)*binomial(n,rm),
and applied recursively gives the identity
C(r,n,m) = Binomial(n,r*m) * Product_{p=1..m} Binomial(r*(m-p+1)-1,r-1).
(End)
C(2,26,10) = A266365(10), where 26 is the size of the alphabet. - Jonathan Sondow, Dec 29 2015
LINKS
FORMULA
C(r,n,m) = n!/((n-r*m)!*m!*(r!)^m).
EXAMPLE
r=1, C(1,n,m) is
1
1, 1
1, 2, 1
1, 3, 3, 1
1, 4, 6, 4, 1
1, 5, 10, 10, 5, 1
r=2, C(2,n,m) is
1
1
1, 1
1, 3
1, 6, 3
1, 10, 15
r=3, C(3,n,m) is
1
1
1
1, 1
1, 4
1, 10
MATHEMATICA
Flatten[Table[{n!/((n-r*m)!*m!*r!^m)}, {r, 1, 50}, {n, 0, 50}, {m, 0, Floor[n/r]}]]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Frank M Jackson, Oct 16 2010
STATUS
approved