OFFSET
1,1
COMMENTS
a(n)=A181365(n,0).
REFERENCES
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-10,4).
FORMULA
G.f.=2z(1-z)^3/[(1-2z)(1-4z+2z^2)].
4*a(n) = 2*A007070(n)-2^n, n>1. - R. J. Mathar, Jul 22 2022
EXAMPLE
a(2)=6 because the 2-compositions of 2, written as (top row / bottom row), are (1/1), (0/2), (2/0), (1,0/0,1), (0,1/1,0), (1,1/0,0), (0,0/1,1) and only the first one does not contain a 0 entry.
MAPLE
G := 2*z*(1-z)^3/((1-2*z)*(1-4*z+2*z^2)): Gser := series(G, z = 0, 30): seq(coeff(Gser, z, n), n = 1 .. 25);
MATHEMATICA
CoefficientList[Series[(2x (1-x)^3)/((1-2x)(1-4x+2x^2)), {x, 0, 30}], x] (* Harvey P. Dale, Mar 29 2020 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Oct 15 2010
STATUS
approved