login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181061
a(n) is the smallest positive number such that the decimal digits of n*a(n) are all 0, 1 or 2.
11
1, 1, 1, 4, 3, 2, 2, 3, 14, 1358, 1, 1, 1, 17, 8, 8, 7, 6, 679, 58, 1, 1, 1, 44, 5, 4, 47, 786, 4, 38, 4, 71, 35, 34, 3, 6, 617, 3, 29, 259, 3, 271, 5, 47, 5, 2716, 22, 26, 25, 229, 2, 2, 231, 4, 393, 2, 2, 193, 19, 19, 2, 2, 181, 194, 33, 34, 17, 3, 15, 29, 3, 31, 1696, 14, 3, 16, 145
OFFSET
0,4
COMMENTS
Records occur for n: 1, 3, 8, 9, 45, 89, 99, 495, 998, ..., . [Robert G. Wilson v, Oct 04 2010]
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..100000 (first 20000 terms and some terms up to 100000 from Victor Maslov)
FORMULA
If a(n)=k, then a(10n)=k. [Robert G. Wilson v, Oct 04 2010]
EXAMPLE
a(9)=1358 because 9*1358=12222 is the smallest multiple of 9 whose decimal digits are all 0, 1 or 2.
MATHEMATICA
f[n_] := Block[{id = {0, 1, 2}, k = 1}, While[ Union@ Join[id, IntegerDigits[k*n]] != id, k++ ]; k]; Array[f, 76] (* Robert G. Wilson v, Oct 04 2010 *)
PROG
(PARI) a(n)=my(k=n, t); while(1, t=vecsort(eval(Vec(Str(k))), , 8); if(t[#t]<3, return(k/n), k+=n)) \\ Charles R Greathouse IV, Sep 05 2011
(PARI) anydiggt2(n)=if(n<2, 0, while(n>0, if(n%10>2, return(1)); n\=10); 0)
a(n)={local(prd, ms=[], rems=[], msn, remsn, pow=10, maxm);
if(n<=0, return(0));
while(n%10==0, n\=10);
maxm=if(n%10==5, 5, if(n%2==1, 3, 4));
for(d=1, 9, if(!anydiggt2(prd=d*n), return(d));
if(prd%10<=2, ms=concat(ms, [d]); rems=concat(rems, [prd\10])));
while(1,
msn=listcreate(maxm*#ms); remsn=listcreate(maxm*#ms);
for(d=0, 9,
for(k=1, #ms,
if(!anydiggt2(prd=d*n+rems[k]), return(d*pow+ms[k]));
if(prd%10<=2, listput(msn, d*pow+ms[k]); listput(remsn, prd\10))));
ms=Vec(msn); rems=Vec(remsn); pow*=10; print1("."))}
CROSSREFS
n*a(n) yields sequence A181060.
Sequence in context: A155462 A109496 A138851 * A329934 A269611 A090342
KEYWORD
base,nonn
AUTHOR
Herman Beeksma, Oct 01 2010
STATUS
approved