login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269611 Decimal expansion of Sum_{n>=1} (sin(Pi/n))^2. 4
4, 3, 2, 2, 6, 7, 5, 0, 4, 3, 2, 3, 9, 6, 3, 7, 1, 4, 1, 1, 1, 8, 5, 5, 6, 0, 6, 3, 4, 4, 0, 4, 2, 8, 0, 9, 2, 0, 7, 8, 5, 2, 1, 7, 3, 5, 5, 0, 5, 3, 1, 9, 5, 5, 5, 2, 5, 6, 9, 9, 9, 6, 5, 9, 9, 2, 3, 0, 0, 3, 0, 1, 0, 6, 1, 4, 8, 2, 3, 0, 7, 9, 8, 4, 1, 1, 0, 7, 7, 0, 5, 8, 5, 1, 5, 0, 2, 6, 3, 5, 0, 8, 1, 4, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..105.

FORMULA

Equals (1/2) * Sum_{n>=1} (1 - cos(2*Pi/n)).

Equals Sum_{k>=1} (-1)^(k+1) * 2^(2*k-1) * Pi^(2*k) * Zeta(2*k) / (2*k)!, where Zeta is the Riemann Zeta function.

Equals Sum_{k>=1} 2^(4*k-2) * Pi^(4*k) * B(2*k) / (2*k)!^2, where B(n) is the Bernoulli number A027641(n)/A027642(n).

EXAMPLE

4.32267504323963714111855606344042809207852173550531955525699965992300301...

MAPLE

evalf(Sum((sin(Pi/n))^2, n=1..infinity), 120);

MATHEMATICA

RealDigits[NSum[Sin[Pi/n]^2, {n, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 10000, PrecisionGoal -> 120, Method -> {"NIntegrate", "MaxRecursion" -> 100}]][[1]]

PROG

(PARI) default(realprecision, 120); sumpos(n=1, (sin(Pi/n))^2)

CROSSREFS

Cf. A051762, A085365, A093721, A269574, A269720.

Sequence in context: A109496 A138851 A181061 * A090342 A010307 A001178

Adjacent sequences:  A269608 A269609 A269610 * A269612 A269613 A269614

KEYWORD

nonn,cons

AUTHOR

Vaclav Kotesovec, Mar 01 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 14:18 EST 2019. Contains 329371 sequences. (Running on oeis4.)