login
A269611
Decimal expansion of Sum_{n>=1} (sin(Pi/n))^2.
5
4, 3, 2, 2, 6, 7, 5, 0, 4, 3, 2, 3, 9, 6, 3, 7, 1, 4, 1, 1, 1, 8, 5, 5, 6, 0, 6, 3, 4, 4, 0, 4, 2, 8, 0, 9, 2, 0, 7, 8, 5, 2, 1, 7, 3, 5, 5, 0, 5, 3, 1, 9, 5, 5, 5, 2, 5, 6, 9, 9, 9, 6, 5, 9, 9, 2, 3, 0, 0, 3, 0, 1, 0, 6, 1, 4, 8, 2, 3, 0, 7, 9, 8, 4, 1, 1, 0, 7, 7, 0, 5, 8, 5, 1, 5, 0, 2, 6, 3, 5, 0, 8, 1, 4, 7
OFFSET
1,1
FORMULA
Equals (1/2) * Sum_{n>=1} (1 - cos(2*Pi/n)).
Equals Sum_{k>=1} (-1)^(k+1) * 2^(2*k-1) * Pi^(2*k) * Zeta(2*k) / (2*k)!, where Zeta is the Riemann zeta function.
Equals Sum_{k>=1} 2^(4*k-2) * Pi^(4*k) * B(2*k) / (2*k)!^2, where B(n) is the Bernoulli number A027641(n)/A027642(n).
EXAMPLE
4.32267504323963714111855606344042809207852173550531955525699965992300301...
MAPLE
evalf(Sum((sin(Pi/n))^2, n=1..infinity), 120);
MATHEMATICA
RealDigits[NSum[Sin[Pi/n]^2, {n, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 10000, PrecisionGoal -> 120, Method -> {"NIntegrate", "MaxRecursion" -> 100}]][[1]]
PROG
(PARI) default(realprecision, 120); sumpos(n=1, (sin(Pi/n))^2)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Mar 01 2016
STATUS
approved