OFFSET
0,2
COMMENTS
D(n, arccos(x)) = U(n, x) + U(n-1, x) where U(n, x) are the Chebyshev polynomials of the second kind. These polynomials arise naturally in the investigation of the integer triples (p, q, (p*q + 1)/(p + q)).
Chebyshev polynomials of the fourth kind, usually denoted by W(n, x) (see, for example, Mason and Handscomb, Chapter 1, Definition 1.3). See A228565 for Chebyshev polynomials of the third kind. Cf. A157751. - Peter Bala, Jan 17 2014
REFERENCES
J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC 2002.
LINKS
Paul Barry, On the Group of Almost-Riordan Arrays, arXiv preprint arXiv:1606.05077 [math.CO], 2016.
Wikipedia, Dirichlet kernel.
FORMULA
From Peter Bala, Jan 17 2014: (Start)
O.g.f. (1 + t)/(1 - 2*x*t + t^2) = 1 + (2*x + 1)*t + (4*x^2 + 2*x - 1)*t^2 + ....
Recurrence equation: W(0,x) = 1, W(1,x) = 2*x + 1 and W(n,x) = 2*x*W(n-1,x) - W(n-2,x) for n >= 2.
In terms of U(n,x), the Chebyshev polynomials of the second kind, we have W(n,x) = U(2*n,u) with u = sqrt((1 + x)/2). Also binomial(2*n,n)*W(n,x) = 2^(2*n)*Jacobi_P(n,1/2,-1/2,x). (End)
Row sums: 2*n+1. - Michel Marcus, Jul 16 2014
T(n,m) = [x^(n-m)](U(n, x) + U(n-1, x)) = [x^(n-m)] S(2*n, sqrt(2*(1+x))), n >= m >= 0, with U(n, x) = S(n, 2*x). The coefficient triangle of the Chebyshev S-polynomials is given in A049310. See the Peter Bala comments above. - Wolfdieter Lang, Jul 26 2014
From Wolfdieter Lang, Jul 30 2014: (Start)
O.g.f. for the row polynomials R(n,x) = Sum_{m=0..n} T(n,m)*x^m, obtained from the one given by Peter Bala above by row reversion: (1 + x*t)/(1 - 2*t + (x*t)^2).
In analogy to A157751 one can derive a recurrence for the row polynomials R(n, x) = x^n*Dir(n,1/x) with Dir(n,x) = U(n,x) + U(n-1,x) using also negative arguments but only one recursive step: R(n,x) = (1+x)*R(n-1,-x) + R(n-1,x), n >= 1, R(0,x) = 1 (R(-1,x) = -1/x). Proof: derive the o.g.f. and compare it with the known one.
This entails the triangle recurrence T(n,m) = (1 + (-1)^m)* T(n-1,m) - (-1)^m*T(n-1,m-1), for n >= m >= 1 with T(n,m) = 0 if n < m and T(n,0) = 2^n. (End)
EXAMPLE
The triangle T(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 4 2 -1
3: 8 4 -4 -1
4: 16 8 -12 -4 1
5: 32 16 -32 -12 6 1
6: 64 32 -80 -32 24 6 -1
7: 128 64 -192 -80 80 24 -8 -1
8: 256 128 -448 -192 240 80 -40 -8 1
9: 512 256 -1024 -448 672 240 -160 -40 10 1
10: 1024 512 -2304 -1024 1792 672 -560 -160 60 10 -1
... reformatted - Wolfdieter Lang, Jul 26 2014
Recurrence: T(4,2) = (1 + 1)*T(3,2) - T(3,1) = 2*(-4) - 4 = -12. T(4,3) = 0*T(3,3) - (-1)*T(3,2) = T(3,2) = -4. - Wolfdieter Lang, Jul 30 2014
MAPLE
ogf := (1 + t)/(1 - 2*x*t + t^2):
ser := simplify(series(ogf, t, 12)): tc := n -> coeff(ser, t, n):
Trow := n -> local k; seq(coeff(tc(n), x, n-k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # Peter Luschny, Oct 07 2024
PROG
(PARI) row(n) = {if (n==0, return([1])); f = 2*x+1; for (k = 2, n, for (i = 1, (k-1)\2 + 1, f += (-1)^(i+1)*(binomial(k-i, i-1)*(2*x)^(k-2*i+2) - 2*binomial(k-1-i, i-1)*(2*x)^(k-2*i)); ); ); Vec(f); } \\ Michel Marcus, Jul 18 2014
CROSSREFS
KEYWORD
AUTHOR
Jonny Griffiths, Sep 21 2010
EXTENSIONS
Missing term in sequence corrected by Paul Curtz, Dec 31 2011
Edited (name reformulated, Wikipedia link added) by Wolfdieter Lang, Jul 26 2014
STATUS
approved