The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130321 Triangle, (2^0, 2^1, 2^2, ...) in every column. 23
 1, 2, 1, 4, 2, 1, 8, 4, 2, 1, 16, 8, 4, 2, 1, 32, 16, 8, 4, 2, 1, 64, 32, 16, 8, 4, 2, 1, 128, 64, 32, 16, 8, 4, 2, 1, 256, 128, 64, 32, 16, 8, 4, 2, 1, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A130321^2 = A130322. Binomial transform of A130321 = triangle A027649. A007318^2 = A038207 = A007318(n,k) * A130321(n,k); i.e., the square of Pascal's triangle = dot product of Pascal's triangle rows and A130321 rows: A007318^2 = (1; 2,1; 4,4,1; 8,12,6,1;...), where row 3, (8,12,6,1) = (1,3,3,1) dot (8,4,2,1). Sequence B is called a reverse reluctant sequence of sequence A, if B is triangle array read by rows: row number k lists first k elements of the sequence A in reverse order. Sequence A130321 is the reverse reluctant sequence of sequence of power of 2 (A000079). - Boris Putievskiy, Dec 13 2012 From Wolfdieter Lang, Jan 10 2015: (Start) This is the Riordan array (1/(1-2*x), x). Row sums give A000225(n+1) = 2^(n+1) - 1. Alternating row sums give A001045(n+1). The inverse Riordan array is (1-2*x, x) = A251635. (End) LINKS Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012. FORMULA Triangle, (1, 2, 4, 8, ...) in every column. Rows are reversals of A059268 terms. a(n)=2^m, where m=(t*t + 3*t + 4)/2 - n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 13 2012 From Wolfdieter Lang, Jan 10 2015: (Start) T(n, m) = 2^(n-m) if n >= m >= 0 and 0 otherwise. G.f. of row polynomials R(n,x) = sum(2^(n-m)*x^m, m=0..n) is 1/(((1-2*z)*(1-x*z) (Riordan property). G.f. column m (with leading zeros) x^m/(1-2*x), m >= 0. The diagonal sequences are D(k) = repeat(2^k), k >= 0. (End) EXAMPLE The triangle T(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 2 1 2: 4 2 1 3: 8 4 2 1 4: 16 8 4 2 1 5: 32 16 8 4 2 1 6: 64 32 16 8 4 2 1 7: 128 64 32 16 8 4 2 1 8: 256 128 64 32 16 8 4 2 1 9: 512 256 128 64 32 16 8 4 2 1 10: 1024 512 256 128 64 32 16 8 4 2 1 ... Reformatted. - Wolfdieter Lang, Jan 10 2015 MATHEMATICA T[n_, m_] := 2^(n-m); Table[T[n, m], {n, 0, 11}, {m, 0, n}] // Flatten (* Jean-François Alcover, Aug 07 2018 *) PROG (Haskell) a130321 n k = a130321_tabl !! n !! k a130321_row n = a130321_tabl !! n a130321_tabl = iterate (\row -> (2 * head row) : row) [1] -- Reinhard Zumkeller, Feb 27 2013 CROSSREFS Cf. A059268, A027649, A130322, A038207, A131816, A000225, A001045, A251635. Sequence in context: A138895 A138846 A235670 * A101508 A106471 A180870 Adjacent sequences: A130318 A130319 A130320 * A130322 A130323 A130324 KEYWORD nonn,tabl AUTHOR Gary W. Adamson, May 24 2007 EXTENSIONS More terms from Philippe Deléham, Feb 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 10:43 EST 2022. Contains 358378 sequences. (Running on oeis4.)