login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180736 a(n) = [r]*[2r]*...[nr], where r=sqrt(2) and []=floor. 6
1, 2, 8, 40, 280, 2240, 20160, 221760, 2661120, 37255680, 558835200, 8941363200, 160944537600, 3057946214400, 64216870502400, 1412771151052800, 33906507625267200, 847662690631680000, 22039229956423680000, 617098438779863040000, 17895854724616028160000, 554771496463096872960000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..425

Vaclav Kotesovec, Graph - The asymptotic ratio (10^8 terms)

FORMULA

a(n) = [r]*[2r]*...[nr], where r=sqrt(2) and []=floor.

a(n) ~ c * 2^(n/2) * n! / n^(1/(2*sqrt(2))), where c = 0.71779404... - Vaclav Kotesovec, Oct 02 2018

EXAMPLE

a(n) = 1*2*4*5*7*...*floor(n*sqrt(2)).

MAPLE

r:=sqrt(2): seq(mul(floor(k*r), k=1..n), n=1..25); # Muniru A Asiru, Sep 29 2018

MATHEMATICA

Table[Product[Floor[i*Sqrt[2]], {i, n}], {n, 1, 25}] (* modified by G. C. Greubel, Sep 29 2018 *)

PROG

(PARI) for(n=1, 25, print1(prod(j=1, n, floor(j*sqrt(2))), ", ")) \\ G. C. Greubel, Sep 29 2018

(Magma) [(&*[Floor(j*Sqrt(2)): j in [1..n]]): n in [1..25]]; // G. C. Greubel, Sep 29 2018

CROSSREFS

Cf. A001951, A194102.

Sequence in context: A000828 A296676 A281910 * A111394 A140363 A280921

Adjacent sequences: A180733 A180734 A180735 * A180737 A180738 A180739

KEYWORD

nonn,nice

AUTHOR

Clark Kimberling, Jan 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 05:56 EST 2022. Contains 358407 sequences. (Running on oeis4.)