login
Numbers k such that k! is the sum of two triangular numbers.
2

%I #19 Jun 27 2022 23:49:18

%S 0,1,2,3,4,5,7,8,9,10,13,15,16,17,21,24,27,28,29,32,33,34,42,49,54,59,

%T 66,68,72,79,80,81,85,86,95,96,99,102

%N Numbers k such that k! is the sum of two triangular numbers.

%C Numbers k such that there are nonnegative numbers x and y such that x*(x+1)/2 + y*(y+1)/2 = k!. Equivalently, (2x+1)^2 + (2y+1)^2 = 8k! + 2. A necessary and sufficient condition for this is that all the prime factors of 4k!+1 that are congruent to 3 (mod 4) occur to even powers (cf. A001481).

%C Based on an email from _R. K. Guy_ to the Sequence Fans Mailing List, Sep 10 2010.

%C See A152089 for further links.

%H Factor Database, <a href="http://factordb.com/index.php?query=4*z%21%2B1&amp;perpage=200">Factors of the numbers 4z!+1</a>

%e 0! = 1! = T(0) + T(1);

%e 2! = T(1) + T(1);

%e 3! = T(0) + T(3) = T(2) + T(2);

%e 4! = T(2) + T(6);

%e 5! = T(0) + T(15) = T(5) + T(14);

%e 7! = T(45) + T(89);

%e 8! = T(89) + T(269);

%e 9! = T(210) + T(825);

%e 10! = T(665) + T(2610) = T(1770) + T(2030);

%e 13! = T(71504) + T(85680);

%e 15! = T(213384) + T(1603064) = T(299894) + T(1589154);

%e 16! = T(3631929) + T(5353005);

%e 17! = T(12851994) + T(23370945) = T(17925060) + T(19750115);

%e etc.

%t triQ[n_] := IntegerQ@ Sqrt[8 n + 1]; fQ[n_] := Block[{k = 1, lmt = Floor@Sqrt[2*n! ], nf = n!}, While[k < lmt && ! triQ[nf - k (k + 1)/2], k++ ]; r = (Sqrt[8*(nf - k (k + 1)/2) + 1] - 1)/2; Print[{k, r, n}]; If[IntegerQ@r, True, False]]; k = 1; lst = {}; While[k < 69, If[ fQ@ k, AppendTo[lst, k]]; k++ ]; lst

%o (Python)

%o from math import factorial

%o from itertools import count, islice

%o from sympy import factorint

%o def A180590_gen(): # generator of terms

%o return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(4*factorial(n)+1).items()),count(0))

%o A180590_list = list(islice(A180590_gen(),15)) # _Chai Wah Wu_, Jun 27 2022

%Y A171099 gives the number of solutions. Cf. A000142, A000217, A001481, A076680. Complement of A152089.

%K nonn,more

%O 1,3

%A _Robert G. Wilson v_, Sep 10 2010

%E Edited by _N. J. A. Sloane_, Sep 24 2010

%E 69 eliminated (see A152089) by _N. J. A. Sloane_, Sep 24 2010

%E Extended by _Georgi Guninski_ and _D. S. McNeil_, Sep 24 2010

%E a(35)-a(38) from _Georgi Guninski_, Oct 12 2010