login
Triangle read by rows: T(n,k) = number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to k.
25

%I #43 Aug 28 2022 08:26:56

%S 1,1,2,1,6,3,1,18,12,4,1,50,50,20,5,1,140,195,90,30,6,1,392,735,392,

%T 147,42,7,1,1106,2716,1652,672,224,56,8,1,3138,9912,6804,2970,1080,

%U 324,72,9,1,8952,35850,27600,12825,4950,1650,450,90,10,1,25652,128865,110715,54450,22022,7865,2420,605,110,11

%N Triangle read by rows: T(n,k) = number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to k.

%C To clarify a slight ambiguity in the definition, the heaviest box in such an arrangement should contain exactly k balls. - _Gus Wiseman_, Sep 22 2016

%H Alois P. Heinz, <a href="/A180281/b180281.txt">Rows n = 1..200, flattened</a> (first 59 rows from R. H. Hardin)

%F Empirical: right half of table, T(n,k) = n*binomial(2*n-k-2,n-2) for 2*k > n; also, T(n,2) = Sum_{j=1..n} binomial(n,j)*binomial(n-j,j) = 2*A097861(n). - _Robert Gerbicz_ in the Sequence Fans Mailing List

%F From _Alois P. Heinz_, Aug 17 2018: (Start)

%F T(n,k) = [x^n] ((x^(k+1)-1)/(x-1))^n - ((x^k-1)/(x-1))^n.

%F T(n,k) = A305161(n,k) - A305161(n,k-1). (End)

%e The T(4,2)=18 arrangements are {0022, 0112, 0121, 0202, 0211, 0220, 1012, 1021, 1102, 1120, 1201, 1210, 2002, 2011, 2020, 2101, 2110, 2200}.

%e Triangle starts

%e 1

%e 1 2

%e 1 6 3

%e 1 18 12 4

%e 1 50 50 20 5

%e 1 140 195 90 30 6

%e ...

%p b:= proc(n, i, k) option remember; `if`(n=0, 1,

%p `if`(i=0, 0, add(b(n-j, i-1, k), j=0..min(n, k))))

%p end:

%p T:= (n, k)-> b(n$2, k)-b(n$2, k-1):

%p seq(seq(T(n,k), k=1..n), n=1..12); # _Alois P. Heinz_, Aug 16 2018

%p # second Maple program:

%p T:= (n, k)-> coeff(series(((x^(k+1)-1)/(x-1))^n

%p -((x^k-1)/(x-1))^n, x, n+1), x, n):

%p seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Aug 17 2018

%t T[n_,k_]:=Select[Tuples[Range[0,k],n],And[Max[#]===k,Total[#]===n]&]; (* _Gus Wiseman_, Sep 22 2016 *)

%t SequenceForm@@@T[4,2] (* example *)

%t Join@@Table[Length[T[n,k]],{n,1,6},{k,1,n}] (* sequence *)

%t (* Second program: *)

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, 0, Sum[b[n-j, i-1, k], {j, 0, Min[n, k]}]]];

%t T[n_, k_] := b[n, n, k] - b[n, n, k-1];

%t Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Aug 28 2022, after _Alois P. Heinz_ *)

%Y Cf. A097861, A180282, A180291.

%Y Row sums give A088218.

%Y T(n,ceiling(n/2)) gives A318160.

%Y T(2n,n) gives A318161.

%Y T(2n-1,n) gives A318161.

%K nonn,tabl

%O 1,3

%A _R. H. Hardin_, Aug 24 2010