login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180281 Triangle read by rows: T(n,k) = number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to k. 25
1, 1, 2, 1, 6, 3, 1, 18, 12, 4, 1, 50, 50, 20, 5, 1, 140, 195, 90, 30, 6, 1, 392, 735, 392, 147, 42, 7, 1, 1106, 2716, 1652, 672, 224, 56, 8, 1, 3138, 9912, 6804, 2970, 1080, 324, 72, 9, 1, 8952, 35850, 27600, 12825, 4950, 1650, 450, 90, 10, 1, 25652, 128865, 110715, 54450, 22022, 7865, 2420, 605, 110, 11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

To clarify a slight ambiguity in the definition, the heaviest box in such an arrangement should contain exactly k balls. - Gus Wiseman, Sep 22 2016

LINKS

Alois P. Heinz, Rows n = 1..200, flattened (first 59 rows from R. H. Hardin)

FORMULA

Empirical: right half of table, T(n,k) = n*binomial(2*n-k-2,n-2) for 2*k>n, also T(n,2 ) = sum{j=1..n} binomial(n,j)*binomial(n-j,j) = 2*A097861(n).

From Alois P. Heinz, Aug 17 2018: (Start)

T(n,k) = [x^n] ((x^(k+1)-1)/(x-1))^n - ((x^k-1)/(x-1))^n.

T(n,k) = A305161(n,k) - A305161(n,k-1). (End)

EXAMPLE

The T(4,2)=18 arrangements are: {0022, 0112, 0121, 0202, 0211, 0220, 1012, 1021, 1102, 1120, 1201, 1210, 2002, 2011, 2020, 2101, 2110, 2200}.

Table starts

1

1 2

1 6 3

1 18 12 4

1 50 50 20 5

1 140 195 90 30 6

...

MAPLE

b:= proc(n, i, k) option remember; `if`(n=0, 1,

      `if`(i=0, 0, add(b(n-j, i-1, k), j=0..min(n, k))))

    end:

T:= (n, k)-> b(n$2, k)-b(n$2, k-1):

seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Aug 16 2018

# second Maple program:

T:= (n, k)-> coeff(series(((x^(k+1)-1)/(x-1))^n

             -((x^k-1)/(x-1))^n, x, n+1), x, n):

seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Aug 17 2018

MATHEMATICA

T[n_, k_]:=Select[Tuples[Range[0, k], n], And[Max[#]===k, Total[#]===n]&]; (* Gus Wiseman, Sep 22 2016 *)

SequenceForm@@@T[4, 2] (* example *)

Join@@Table[Length[T[n, k]], {n, 1, 6}, {k, 1, n}] (* sequence *)

CROSSREFS

Cf. A097861, A180282, A180291.

Row sums give A088218.

T(n,ceiling(n/2)) gives A318160.

T(2n,n) gives A318161.

T(2n-1,n) gives A318161.

Sequence in context: A121468 A168151 A213221 * A187888 A239102 A239103

Adjacent sequences:  A180278 A180279 A180280 * A180282 A180283 A180284

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, formula from Robert Gerbicz in the Sequence Fans Mailing List, Aug 24 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)