login
A179473
G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1-2^n*x)^n.
1
1, 1, 3, 25, 553, 30593, 4058273, 1254164865, 884379898753, 1400813695453185, 4923141150511206913, 38012367976534051399681, 639567877826710211455375361, 23289359003850096570580313620481
OFFSET
0,3
EXAMPLE
1/(1-x) = 1 + 1*x*(1-2*x) + 3*x^2*(1-2^2*x)^2 + 25*x^3*(1-2^3*x)^3 + 553*x^4*(1-2^4*x)^4 + 30593*x^5*(1-2^5*x)^5 + 4058273*x^6*(1-2^6*x)^6 +...
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[ #A]=1-polcoeff(sum(m=0, #A-1, A[m+1]*x^m*(1-2^m*x+O(x^#A))^m), #A-1)); A[n+1]}
CROSSREFS
Cf. A179472.
Sequence in context: A003024 A224679 A213599 * A248417 A355123 A306795
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 15 2010
STATUS
approved