login
A179472
G.f.: 1 + x = Sum_{n>=0} a(n)*x^n*(1-2^n*x)^n.
1
1, 1, 2, 16, 352, 19456, 2580480, 797442048, 562315657216, 890678506684416, 3130276584569700352, 24169368847503392243712, 406655844230538529416937472, 14808051220103187059129440010240
OFFSET
0,3
EXAMPLE
1+x = 1 + 1*x*(1-2*x) + 2*x^2*(1-2^2*x)^2 + 16*x^3*(1-2^3*x)^3 + 352*x^4*(1-2^4*x)^4 + 19456*x^5*(1-2^5*x)^5 + 2580480*x^6*(1-2^6*x)^6 +...
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[ #A]=-polcoeff(sum(m=0, #A-1, A[m+1]*x^m*(1-2^m*x+O(x^#A))^m), #A-1)); A[n+1]}
CROSSREFS
Cf. A179473.
Sequence in context: A012721 A297095 A289972 * A009341 A366396 A015201
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 15 2010
STATUS
approved