login
A179326
L.g.f.: G(x) = x*exp( Sum_{n>=1} G(G(x)^n)/n ) where G(x) = x*exp(Sum_{n>=1} a(n)*x^n/n).
1
1, 5, 28, 181, 1271, 9596, 76665, 642941, 5624461, 51099545, 480558695, 4666385008, 46694803650, 480762896003, 5086429440683, 55239828754125, 615255102223189, 7022308784061773, 82077445415137737, 981780041706192661
OFFSET
1,2
EXAMPLE
L.g.f.: L(x) = x + 5*x^2/2 + 28*x^3/3 + 181*x^4/4 + 1271*x^5/5 +...
G(x) = x*exp(L(x)) = x + x^2 + 3*x^3 + 12*x^4 + 59*x^5 + 331*x^6 + 2062*x^7 + 13945*x^8 + 100981*x^9 +...+ A179325(n)*x^n +...
L(x) = Log(G(x)/x) = G(G(x)) + G(G(x)^2)/2 + G(G(x)^3)/3 + G(G(x)^4)/4 +...
PROG
(PARI) {a(n)=local(A=x); for(i=1, n+1, A=x*exp(sum(m=1, n, subst(A, x, (subst(A^m, x, x+x*O(x^n))))/m))); n*polcoeff(log(A/x), n)}
CROSSREFS
Cf. A179325.
Sequence in context: A095676 A324352 A006157 * A156629 A331797 A123776
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 17 2010
STATUS
approved