login
A179324
L.g.f.: G(x) = x*exp( Sum_{n>=1} G(G(x^n))/n ) where G(x) = x*exp(Sum_{n>=1} a(n)*x^n/n).
2
1, 5, 25, 157, 1061, 7883, 61727, 508949, 4377904, 39144035, 362532974, 3469415119, 34239639968, 347923109287, 3635414562245, 39018272951829, 429753842563060, 4853492527491008, 56163703072054240, 665483565486515787
OFFSET
1,2
EXAMPLE
G.f.: L(x) = x + 5*x^2/2 + 25*x^3/3 + 157*x^4/4 + 1061*x^5/5 +...
G(x) = x*exp(L(x)) = x + x^2 + 3*x^3 + 11*x^4 + 52*x^5 + 280*x^6 + 1705*x^7 + 11275*x^8 + 80120*x^9 + 604111*x^10 +...+ A179322(n)*x^n +...
L(x) = log(G(x)/x) = G(G(x)) + G(G(x^2))/2 + G(G(x^3))/3 + G(G(x^4))/4 + G(G(x^5))/5 + G(G(x^6))/6 +...+ G(G(x^n))/n +...
PROG
(PARI) {a(n)=local(A=x); for(i=1, n, A=x*exp(sum(m=1, n, subst(A, x, (subst(A, x, x^m+x*O(x^n))))/m))); n*polcoeff(log(A/x), n)}
CROSSREFS
Sequence in context: A121112 A090014 A249475 * A097145 A085644 A356599
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 16 2010
STATUS
approved