This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179237 a(0) = 1, a(1) = 2; a(n+1) =  6*a(n) + a(n-1) for n>1. 4
 1, 2, 13, 80, 493, 3038, 18721, 115364, 710905, 4380794, 26995669, 166354808, 1025124517, 6317101910, 38927735977, 239883517772, 1478228842609, 9109256573426, 56133768283165, 345911866272416, 2131604965917661, 13135541661778382, 80944854936587953 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n)/a(n-1) converges to 1/(sqrt(10) - 3) = 6.16227766017... = A176398. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (6,1). FORMULA Let M = the 2x2 matrix [2,3; 3,4]. a(n) = term (1,1) in M^n. G.f.: ( -1+4*x ) / ( -1+6*x+x^2 ). a(n) = A005668(n) + A015451(n). - R. J. Mathar, Jul 06 2012 a(n) = ((3-sqrt(10))^n*(1+sqrt(10))+(-1+sqrt(10))*(3+sqrt(10))^n)/(2*sqrt(10)). - Colin Barker, Oct 13 2015 EXAMPLE a(5) = 3038 = 6*a(5) + a(4) = 6*493 + 80. a(5) = term (1,1) in M^5 where M^5 = [3038, 4215, 4215, 5848]. MATHEMATICA CoefficientList[Series[(-1 + 4 x)/(-1 + 6 x + x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 13 2015 *) PROG (PARI) Vec((-1+4*x)/(-1+6*x+x^2) + O(x^40)) \\ Colin Barker, Oct 13 2015 (MAGMA) I:=[1, 2]; [n le 2 select I[n] else 6*Self(n-1)+Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 13 2015 CROSSREFS Sequence in context: A271475 A037491 A037571 * A216316 A000179 A246383 Adjacent sequences:  A179234 A179235 A179236 * A179238 A179239 A179240 KEYWORD nonn,easy AUTHOR Gary W. Adamson, Jul 04 2010 EXTENSIONS Corrected by R. J. Mathar, Jul 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 17:07 EST 2019. Contains 319350 sequences. (Running on oeis4.)