OFFSET
0,2
COMMENTS
a(n)/a(n-1) converges to 1/(sqrt(10) - 3) = 6.16227766017... = A176398.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,1).
FORMULA
Let M = the 2x2 matrix [2,3; 3,4]. a(n) = term (1,1) in M^n.
a(n) = ((3-sqrt(10))^n*(1+sqrt(10))+(-1+sqrt(10))*(3+sqrt(10))^n)/(2*sqrt(10)). - Colin Barker, Oct 13 2015
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*6^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*6^k, n>0. - R. J. Mathar, Feb 14 2024
EXAMPLE
a(5) = 3038 = 6*a(5) + a(4) = 6*493 + 80.
a(5) = term (1,1) in M^5 where M^5 = [3038, 4215, 4215, 5848].
MATHEMATICA
CoefficientList[Series[(-1 + 4 x)/(-1 + 6 x + x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 13 2015 *)
PROG
(PARI) Vec((-1+4*x)/(-1+6*x+x^2) + O(x^40)) \\ Colin Barker, Oct 13 2015
(Magma) I:=[1, 2]; [n le 2 select I[n] else 6*Self(n-1)+Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 13 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jul 04 2010
EXTENSIONS
Corrected by R. J. Mathar, Jul 06 2012
STATUS
approved