This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179001 Partial sums of floor(Fibonacci(n)/3). 1
 0, 0, 0, 0, 1, 2, 4, 8, 15, 26, 44, 73, 121, 198, 323, 526, 855, 1387, 2248, 3641, 5896, 9544, 15447, 24999, 40455, 65463, 105927, 171399, 277336, 448745, 726091, 1174847, 1900950, 3075809, 4976771, 8052592, 13029376, 21081981, 34111370, 55193365, 89304750 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Partial sums of A004696. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..280 Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. FORMULA a(n)=round(Fibonacci(n+2)/3-3*n/8-11/24). a(n)=round(Fibonacci(n+2)/3-3*n/8-1/3). a(n)=floor(Fibonacci(n+2)/3-3*n/8-1/6). a(n)=ceil(Fibonacci(n+2)/3-3*n/8-3/4). a(n)=a(n-8)+Fibonacci(n-1)+Fibonacci(n-3)-3, n>8. a(n)=2*a(n-1)-a(n-3)+a(n-8)-2*a(n-9)+a(n-11), n>10. G.f.: -x^4*(1+x^4+x^3) / ( (1+x)*(x^2+1)*(x^2+x-1)*(x^4+1)*(x-1)^2 ). EXAMPLE a(9)=0+0+0+0+1+1+2+4+7+11=26. MAPLE A179001 := proc(n) add( floor(combinat[fibonacci](i)/3), i=0..n) ; end proc: PROG (MAGMA) [Floor(Fibonacci(n+2)/3-3*n/8-1/6): n in [0..40]]; // Vincenzo Librandi, Apr 28 2011 CROSSREFS Cf. A004696. Sequence in context: A114226 A210063 A187154 * A222147 A003241 A182844 Adjacent sequences:  A178998 A178999 A179000 * A179002 A179003 A179004 KEYWORD nonn AUTHOR Mircea Merca, Jan 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .