The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178742 Partial sums of floor(2^n/9). 1
 0, 0, 0, 0, 1, 4, 11, 25, 53, 109, 222, 449, 904, 1814, 3634, 7274, 14555, 29118, 58245, 116499, 233007, 466023, 932056, 1864123, 3728258, 7456528, 14913068, 29826148, 59652309, 119304632, 238609279, 477218573, 954437161 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Partial sums of A153234. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. Index entries for linear recurrences with constant coefficients, signature (4,-5,1,4,-5,2). FORMULA a(n) = round((8*2^n - 18*n - 9)/36). a(n) = floor((4*2^n - 9*n + 2)/18). a(n) = ceiling((4*2^n - 9*n - 11)/18). a(n) = round((4*2^n - 9*n - 4)/18). a(n) = a(n-6) + 7*2^(n-5) - 3, n > 5. a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 4*a(n-4) - 5*a(n-5) + 2*a(n-6). G.f.: x^4 / ( (1-2*x)*(1+x)*(1-x+x^2)*(1-x)^2 ). EXAMPLE a(6) = 0 + 0 + 0 + 0 + 1 + 3 + 7 = 11. MAPLE A178742 := proc(n) add( floor(2^i/9), i=0..n) ; end proc: MATHEMATICA CoefficientList[Series[x^4/((1-2x)(1+x)(1-x+x^2)(1-x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *) LinearRecurrence[{4, -5, 1, 4, -5, 2}, {0, 0, 0, 0, 1, 4}, 40] (* Harvey P. Dale, Jan 25 2015 *) PROG (Magma) [&+[Floor(2^k/9): k in [0..n]]: n in [0..25]]; // Bruno Berselli, Apr 26 2011 (Magma) I:=[0, 0, 0, 0, 1, 4]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+Self(n-3)+4*Self(n-4)-5*Self(n-5)+2*Self(n-6): n in [1..40]]; // Vincenzo Librandi, Mar 26 2014 (PARI) vector(30, n, n--; ((4*2^n-9*n+2)/18)\1) \\ G. C. Greubel, Jan 24 2019 (Sage) [floor((4*2^n-9*n+2)/18) for n in (0..30)] # G. C. Greubel, Jan 24 2019 CROSSREFS Cf. A153234. Sequence in context: A266337 A262158 A156127 * A202088 A328937 A328936 Adjacent sequences: A178739 A178740 A178741 * A178743 A178744 A178745 KEYWORD nonn,less AUTHOR Mircea Merca, Dec 26 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 17:46 EST 2022. Contains 358703 sequences. (Running on oeis4.)