login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178455
Partial sums of floor(2^n/7).
4
0, 0, 0, 1, 3, 7, 16, 34, 70, 143, 289, 581, 1166, 2336, 4676, 9357, 18719, 37443, 74892, 149790, 299586, 599179, 1198365, 2396737, 4793482, 9586972, 19173952, 38347913, 76695835, 153391679, 306783368, 613566746, 1227133502
OFFSET
0,5
COMMENTS
Partial sums of A155803.
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((12*2^n - 14*n - 15)/42).
a(n) = round((6*2^n - 7*n - 5)/21).
a(n) = round((6*2^n - 7*n - 10)/21).
a(n) = round((6*2^n - 7*n - 6)/21).
a(n) = a(n-3) + 2^(n-2) - 1, n > 2.
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) - 3*a(n-4) + 2*a(n-5), n > 4.
G.f.: -x^3 / ( (2*x-1)*(1 + x + x^2)*(x-1)^2 ). - R. J. Mathar, Dec 22 2010
a(n) = floor((2^(n+1))/7) - floor((n+1)/3). - Ridouane Oudra, Aug 31 2019
EXAMPLE
a(6) = 0 + 0 + 0 + 1 + 2 + 4 + 9 = 16.
MAPLE
seq(round((6*2^n-7*n-6)/21), n=0..32)
MATHEMATICA
Accumulate[Floor[2^Range[0, 40]/7]] (* or *) LinearRecurrence[{3, -2, 1, -3, 2}, {0, 0, 0, 1, 3}, 40] (* Harvey P. Dale, May 02 2015 *)
PROG
(Magma) [Round((12*2^n-14*n-15)/42): n in [0..40]]; // Vincenzo Librandi, Jun 23 2011
CROSSREFS
Cf. A155803.
Sequence in context: A182615 A181893 A054455 * A281811 A238089 A335713
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 22 2010
STATUS
approved