login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281811 Expansion of Sum_{i>=0} x^(2^i) / (1 - Sum_{j>=0} x^(2^j))^2. 2
1, 3, 7, 16, 34, 71, 143, 286, 562, 1096, 2114, 4054, 7720, 14631, 27591, 51834, 97018, 181030, 336810, 625062, 1157288, 2138200, 3942858, 7257830, 13338024, 24474978, 44848232, 82073852, 150016328, 273893503, 499534495, 910161570, 1656786466, 3013237398, 5475710770, 9942780954, 18040712384, 32711070838 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Total number of parts in all compositions (ordered partitions) of n into powers of 2 (A000079).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 1..4000

Index entries for sequences related to compositions

FORMULA

G.f.: Sum_{i>=0} x^(2^i) / (1 - Sum_{j>=0} x^(2^j))^2.

a(n) ~ c * n / r^n, where r = 0.566123792684559918241681653033264449147... is the root of the equation Sum_{j>=0} r^(2^j) = 1 and c = 0.34432689951558638915900387175922521737229978512101795819134... . - Vaclav Kotesovec, Feb 17 2017

EXAMPLE

a(4) = 16 because we have [4], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1] and 1 + 2 + 3 + 3 + 3 + 4 = 16.

MAPLE

b:= proc(n) option remember; `if`(n=0, [1, 0], add(

      (p-> p+[0, p[1]])(b(n-2^j)), j=0..ilog2(n)))

    end:

a:= n-> b(n)[2]:

seq(a(n), n=1..55);  # Alois P. Heinz, Aug 07 2019

MATHEMATICA

nmax = 38; Rest[CoefficientList[Series[Sum[x^2^i, {i, 0, nmax}]/(1 - Sum[x^2^j, {j, 0, nmax}])^2, {x, 0, nmax}], x]]

nmax = 40; Rest[CoefficientList[Series[Sum[x^(2^i), {i, 0, Floor[Log[nmax]/Log[2]] + 1}]/(1 - Sum[x^(2^j), {j, 0, Floor[Log[nmax]/Log[2]] + 1}])^2, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Feb 17 2017 *)

CROSSREFS

Cf. A000079, A023359.

Sequence in context: A181893 A054455 A178455 * A238089 A026734 A026767

Adjacent sequences:  A281808 A281809 A281810 * A281812 A281813 A281814

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jan 30 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 11:18 EDT 2019. Contains 328257 sequences. (Running on oeis4.)