

A177834


Opmanis's sequence: a(n) is the smallest integer k such that k or one of its nonzero substrings (regarded as an integer) is divisible by every integer in the range 1 through n.


6



1, 2, 6, 12, 45, 54, 56, 56, 245, 504, 1440, 1440, 5044, 5044, 10456, 10569, 11704, 11704, 11704, 13608, 13608, 13608, 26460, 26460, 198007, 258064, 264600, 264600, 475440, 475440, 1754608, 1754608, 2258064, 2258064, 2646004, 2646004, 2992520
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Comment from N. J. A. Sloane, May 28 2010: the factorizations of the initial terms are:
1, 2, 2*3, 2^2*3, 3^2*5, 2*3^3, 2^3*7, 2^3*7, 5*7^2, 2^3*3^2*7, 2^5*3^2*5, 2^5*3^2*5, 2^2*13*97, 2^2*13*97, 2^3*1307, 3*13*271, 2^3*7*11*19,
2^3*7*11*19, 2^3*7*11*19, 2^3*3^5*7, 2^3*3^5*7, 2^3*3^5*7, 2^2*3^3*5*7^2, 2^2*3^3*5*7^2, 23*8609, 2^4*127^2, 2^3*3^3*5^2*7^2, 2^3*3^3*5^2*7^2, 2^4*3*5*7*283,
2^4*3*5*7*283, 2^4*109663, 2^4*109663, 2^4*3^3*5227, 2^4*3^3*5227, 2^2*139*4759, 2^2*139*4759, 2^3*5*79*947, ...
The name "Opmanis's sequence" is due to N. J. A. Sloane, not the author.


LINKS

Robert Gerbicz, Table of n, a(n) for n=1..102


EXAMPLE

a(8)=56 because 56 is divisible by 1,2,4,7,8; 5 is divisible by 5; 6 is divisible by 3 and 6. Therefore the set {1,2,3,4,5,6,7,8} is covered by the divisors. 56 is the smallest number with this property.


MATHEMATICA

k = 1; lst = {}; mx = 0; f[n_] := Block[{a, d, id = IntegerDigits@ n}, a = Complement[ Union[ FromDigits /@ Flatten[ Table[ Partition[ id, k, 1], {k, Length@ id}], 1]], {0}]; d = Union[ Flatten[ Divisors /@ a]]; Complement[ Range@ 100, d][[1]]  1]; While[k < 3000000, a = f@k; If[a > mx, Print[{a, k}]; AppendTo[lst, k]; mx = a]; k++ ] (* Zak Seidov & Robert G. Wilson v, May 30 2010 *)


CROSSREFS

Cf. A003418 (a weak upper bound), A169819, A169858.
Sequence in context: A332868 A261467 A180070 * A169858 A292132 A208147
Adjacent sequences: A177831 A177832 A177833 * A177835 A177836 A177837


KEYWORD

nonn,base,nice


AUTHOR

Martins Opmanis, May 14 2010


EXTENSIONS

Edited by N. J. A. Sloane, May 28 2010
a(1)a(37) confirmed by Zak Seidov, May 28 2010


STATUS

approved



