login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177834
Opmanis's sequence: a(n) is the smallest integer k such that k or one of its nonzero substrings (regarded as an integer) is divisible by every integer in the range 1 through n.
6
1, 2, 6, 12, 45, 54, 56, 56, 245, 504, 1440, 1440, 5044, 5044, 10456, 10569, 11704, 11704, 11704, 13608, 13608, 13608, 26460, 26460, 198007, 258064, 264600, 264600, 475440, 475440, 1754608, 1754608, 2258064, 2258064, 2646004, 2646004, 2992520
OFFSET
1,2
COMMENTS
Comment from N. J. A. Sloane, May 28 2010: (Start)
The factorizations of the initial terms are:
1, 2, 2*3, 2^2*3, 3^2*5, 2*3^3, 2^3*7, 2^3*7, 5*7^2, 2^3*3^2*7, 2^5*3^2*5, 2^5*3^2*5, 2^2*13*97, 2^2*13*97, 2^3*1307, 3*13*271, 2^3*7*11*19,
2^3*7*11*19, 2^3*7*11*19, 2^3*3^5*7, 2^3*3^5*7, 2^3*3^5*7, 2^2*3^3*5*7^2, 2^2*3^3*5*7^2, 23*8609, 2^4*127^2, 2^3*3^3*5^2*7^2, 2^3*3^3*5^2*7^2, 2^4*3*5*7*283,
2^4*3*5*7*283, 2^4*109663, 2^4*109663, 2^4*3^3*5227, 2^4*3^3*5227, 2^2*139*4759, 2^2*139*4759, 2^3*5*79*947, ...
The name "Opmanis's sequence" is due to N. J. A. Sloane, not the author. (End)
LINKS
EXAMPLE
a(8)=56 because 56 is divisible by 1,2,4,7,8; 5 is divisible by 5; 6 is divisible by 3 and 6. Therefore the set {1,2,3,4,5,6,7,8} is covered by the divisors. 56 is the smallest number with this property.
MATHEMATICA
k = 1; lst = {}; mx = 0; f[n_] := Block[{a, d, id = IntegerDigits@ n}, a = Complement[ Union[ FromDigits /@ Flatten[ Table[ Partition[ id, k, 1], {k, Length@ id}], 1]], {0}]; d = Union[ Flatten[ Divisors /@ a]]; Complement[ Range@ 100, d][[1]] - 1]; While[k < 3000000, a = f@k; If[a > mx, Print[{a, k}]; AppendTo[lst, k]; mx = a]; k++ ] (* Zak Seidov & Robert G. Wilson v, May 30 2010 *)
PROG
(Python)
def substrings(n): # returns set of nonzero substrings of n
s = str(n)
ss = (s[i:j] for i in range(len(s)) for j in range(i+1, len(s)+1))
return set(int(sij) for sij in ss) - {0}
def a(n, startk=1):
k = startk
while True:
subsk = substrings(k)
if all(any(kij%m == 0 for kij in subsk) for m in range(1, n+1)):
return k
k += 1
def afind():
n, an = 1, 1
while True:
n, an = n+1, a(n, startk=an)
print(an, end=", ")
afind() # Michael S. Branicky, Jan 22 2022
CROSSREFS
Cf. A003418 (a weak upper bound), A169819, A169858.
Sequence in context: A332868 A261467 A180070 * A169858 A292132 A208147
KEYWORD
nonn,base,nice
AUTHOR
Martins Opmanis, May 14 2010
EXTENSIONS
Edited by N. J. A. Sloane, May 28 2010
a(1)-a(37) confirmed by Zak Seidov, May 28 2010
STATUS
approved