login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177468 Expansion of g.f.: (1+x+12*x^2-8*x^3)/(1-5*x-30*x^2+69*x^3+31*x^4-22*x^5) 0
1, 6, 72, 463, 4030, 28908, 231393, 1733366, 13499224, 102723495, 792454734, 6063888364, 46624820793, 357473932822, 2745399810920, 21063557869407, 161702118409342, 1240928795315404, 9525079068251761, 73103241532364950 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs, Pure Mathematics and Applications (PU.M.A.) 19 (2008), no. 2-3, 17-26.

LINKS

Table of n, a(n) for n=1..20.

S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs

Index entries for linear recurrences with constant coefficients, signature (5, 30, -69, -31, 22).

FORMULA

(1+x+12*x^2-8*x^3)/(1-5*x-30*x^2+69*x^3+31*x^4-22*x^5)

a(0)=1, a(1)=6, a(2)=72, a(3)=463, a(4)=4030, a(n)=5*a(n-1)+ 30*a(n-2)- 69*a(n-3)-31*a(n-4)+22*a(n-5). - Harvey P. Dale, Sep 09 2014

MATHEMATICA

CoefficientList[Series[(1+x+12x^2-8x^3)/(1-5x-30x^2+69x^3+31x^4-22x^5), {x, 0, 20}], x] (* or *) LinearRecurrence[{5, 30, -69, -31, 22}, {1, 6, 72, 463, 4030}, 20] (* Harvey P. Dale, Sep 09 2014 *)

CROSSREFS

Sequence in context: A276244 A282817 A274955 * A052791 A334327 A129532

Adjacent sequences:  A177465 A177466 A177467 * A177469 A177470 A177471

KEYWORD

nonn

AUTHOR

Signy Olafsdottir (signy06(AT)ru.is), May 09 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 21:37 EDT 2020. Contains 334690 sequences. (Running on oeis4.)