login
A282817
Number of inequivalent ways to color the faces of a cube using at most n colors so that no color appears more than twice.
2
0, 0, 0, 6, 72, 375, 1320, 3675, 8736, 18522, 36000, 65340, 112200, 184041, 290472, 443625, 658560, 953700, 1351296, 1877922, 2565000, 3449355, 4573800, 5987751, 7747872, 9918750, 12573600, 15795000, 19675656, 24319197, 29841000, 36369045, 44044800, 53024136
OFFSET
0,4
COMMENTS
Also the number of inequivalent ways to color the corners of an octahedron using at most n colors so that no color appears more than twice.
FORMULA
a(n) = (n-2)^2*(n-1)*n^2*(n+5)/24.
G.f.: 3*x^3*(-2-10*x+x^2+x^3)/(x-1)^7 . - R. J. Mathar, Feb 23 2017
EXAMPLE
For n=3 we get a(3)=6 ways to color the faces of a cube with three colors so that no color appears more than twice.
MATHEMATICA
Table[(3 n (n - 1) (n - 2)^2 + 6 n (n - 1) (n - 2) + n (n - 1) (n - 2) (n - 3) (n - 4) (n - 5) + 15 n (n - 1) (n - 2) (n - 3) (n - 4) + 45 n (n - 1) (n - 2) (n - 3) + 15 n (n - 1) (n - 2))/24, {n, 0, 16}]
CROSSREFS
Cf. A249460, A282816. A047780 (face colorings without restriction).
Sequence in context: A192990 A276244 A361571 * A274955 A177468 A052791
KEYWORD
nonn,easy
AUTHOR
David Nacin, Feb 21 2017
STATUS
approved