%I #4 Apr 05 2012 18:16:11
%S 1,1,0,1,1,0,1,0,0,0,1,1,1,0,0,1,0,0,0,0,0,1,1,0,2,0,0,0,1,0,1,0,0,0,
%T 0,0,1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,2,0,3,0,0,0,0,0,1,0,
%U 0,0,0,0,0,0,0,0,0,0
%N Triangle read by rows, A077049 * the diagonalized version of A002033.
%C Row sums = A002033 starting with offset 1: (1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8,...)
%F As infinite lower triangular matrices, A077049 * the diagonalized version of
%F A002033: (1, 1, 1, 2, 1, 3, 1, 4, 2,...) as the right border with the rest zeros.
%e First few rows of the triangle =
%e 1;
%e 1, 0;
%e 1, 1, 0;
%e 1, 0, 0, 0;
%e 1, 1, 1, 0, 0;
%e 1, 0, 0, 0, 0, 0;
%e 1, 1, 0, 2, 0, 0, 0;
%e 1, 0, 1, 0, 0, 0, 0, 0;
%e 1, 1, 0, 0, 1, 0, 0, 0, 0;
%e 1, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e 1, 1, 1, 2, 0, 3, 0, 0, 0, 0, 0;
%e 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0;
%e 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e 1, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0;
%e 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e 1, 1, 1, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0;
%e 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e 1, 1, 0, 2, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e 1, 1, 1, 2, 0, 3, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e ...
%Y Cf. A077049, A002033
%K nonn,tabl
%O 1,25
%A _Gary W. Adamson_ & _Mats Granvik_, Apr 28 2010