OFFSET
0,7
COMMENTS
The g.f. for compositions of k_1 kinds of 1's, k_2 kinds of 2's, ..., k_j kinds of j's, ... is 1/(1-sum(j>=1, k_j * x^j )).
LINKS
Jarib R. Acosta, Yadira Caicedo, Juan P. Poveda, José L. Ramírez, Mark Shattuck, Some New Restricted n-Color Composition Functions, J. Int. Seq., Vol. 22 (2019), Article 19.6.4.
Index entries for linear recurrences with constant coefficients, signature (1, 0, 2, -1).
FORMULA
G.f.: 1/(1-sum(j>=1, floor(j/3)*x^j )).
Conjectural g.f.: (x-1)^2*(x^2+x+1) / (x^4-2*x^3-x+1). - Colin Barker, May 15 2013
G.f.: 1 + x^3*Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+1 + 2*x^2 - x^3)/( x*(4*k+3 + 2*x^2 - x^3 ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 11 2013
PROG
(PARI) N=66; x='x+O('x^N) /* that many terms */
gf= 1/(1-sum(j=1, N, floor(j/3)*x^j ))
Vec(gf) /* show terms */
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 06 2011
STATUS
approved