login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A176341
a(n) = the location of the first appearance of the decimal expansion of n in the decimal expansion of Pi.
20
32, 1, 6, 0, 2, 4, 7, 13, 11, 5, 49, 94, 148, 110, 1, 3, 40, 95, 424, 37, 53, 93, 135, 16, 292, 89, 6, 28, 33, 186, 64, 0, 15, 24, 86, 9, 285, 46, 17, 43, 70, 2, 92, 23, 59, 60, 19, 119, 87, 57, 31, 48, 172, 8, 191, 130, 210, 404, 10, 4, 127, 219, 20, 312, 22, 7, 117, 98, 605, 41
OFFSET
0,1
COMMENTS
It is unknown whether Pi is a normal number. If it is (at least in base 10) then this sequence is well defined.
The numbers a(n) refer to the position of the initial digit of n in the decimal expansion of Pi, where "3" is at position a(3)=0, "1" is at position a(1)=1, etc. This is also the numbering scheme used on the "Pi search page" cited among the LINKS. See A232013 for a sequence based on iterations of this one. See A032445 for a variant of the present sequence, where numbering starts at one. - M. F. Hasler, Nov 16 2013
LINKS
Michael D. Huberty, Ko Hayashi & Chia Vang, First 100,000 digits of pi
FORMULA
a(n) = A032445(n)-1. - M. F. Hasler, Nov 16 2013
a(n) = 0 if n is in A011545, otherwise a(n) = A014777(n). - Pontus von Brömssen, Aug 31 2024
MATHEMATICA
p=ToString[FromDigits[RealDigits[N[Pi, 10^4]][[1]]]]; Do[Print[StringPosition[p, ToString[n]][[1]][[1]] - 1], {n, 0, 100}] (* Vincenzo Librandi, Apr 17 2017 *)
With[{pid=RealDigits[Pi, 10, 800][[1]]}, Flatten[Table[ SequencePosition[ pid, IntegerDigits[n], 1], {n, 0, 70}], 1]][[All, 1]]-1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 27 2019 *)
PROG
(Python)
pi = "314159265358979323846264338327950288419716939937510582097494459230..."
[ pi.find(str(i)) for i in range(10000) ]
(PARI) A176341(n)=my(L=#Str(n)); n=Mod(n, 10^L); for(k=L-1, 9e9, Pi\.1^k-n||return(k+1-L)) \\ Make sure to use sufficient realprecision, e.g. via \p999. - M. F. Hasler, Nov 16 2013
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Daniel E. Loeb, Apr 15 2010
STATUS
approved