The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175714 Expansion of -1/((1 - x)*(1 - x^2 + 4*x^3)). 1
 -1, -1, -2, 2, 1, 9, -8, 4, -45, 35, -62, 214, -203, 461, -1060, 1272, -2905, 5511, -7994, 17130, -30039, 49105, -98560, 169260, -294981, 563499, -972022, 1743422, -3226019, 5631509, -10199708, 18535584, -32725745, 59334415, -106868082, 190237394, -344205743, 617709721 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The ratio a(n+1)/a(n) approaches -1.7963219032594415... as n-> infinity. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,1,-5,4). FORMULA G.f.: -1/((1 - x)*(1 - x^2 + 4*x^3)). MAPLE seq(coeff(series(-1/((1-x)*(1-x^2+4*x^3)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Dec 04 2019 MATHEMATICA LinearRecurrence[{1, 1, -5, 4}, {-1, -1, -2, 2}, 40] (* Bruno Berselli, May 17 2017 *) PROG (PARI) my(x='x+O('x^40)); Vec(-1/((1-x)*(1-x^2+4*x^3))) \\ G. C. Greubel, Dec 04 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( -1/((1-x)*(1-x^2+4*x^3)) )); // G. C. Greubel, Dec 04 2019 (Sage) def A175714_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P( -1/((1-x)*(1-x^2+4*x^3)) ).list() A175714_list(40) # G. C. Greubel, Dec 04 2019 (GAP) a:=[-1, -1, -2, 2];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]-5*a[n-3] + 4*a[n-4]; od; a; # G. C. Greubel, Dec 04 2019 CROSSREFS Sequence in context: A126586 A128463 A136730 * A291082 A295855 A285068 Adjacent sequences:  A175711 A175712 A175713 * A175715 A175716 A175717 KEYWORD sign,easy AUTHOR Roger L. Bagula, Dec 04 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 04:57 EDT 2020. Contains 334758 sequences. (Running on oeis4.)